欢迎访问ic37.com |
会员登录 免费注册
发布采购

NCP5316FTR2 参数 Datasheet PDF下载

NCP5316FTR2图片预览
型号: NCP5316FTR2
PDF下载: 下载PDF文件 查看货源
内容描述: 四/五/六相降压控制器的CPU [Four/Five/Six-Phase Buck CPU Controller]
分类和应用: 控制器
文件页数/大小: 32 页 / 358 K
品牌: ONSEMI [ ONSEMI ]
 浏览型号NCP5316FTR2的Datasheet PDF文件第20页浏览型号NCP5316FTR2的Datasheet PDF文件第21页浏览型号NCP5316FTR2的Datasheet PDF文件第22页浏览型号NCP5316FTR2的Datasheet PDF文件第23页浏览型号NCP5316FTR2的Datasheet PDF文件第25页浏览型号NCP5316FTR2的Datasheet PDF文件第26页浏览型号NCP5316FTR2的Datasheet PDF文件第27页浏览型号NCP5316FTR2的Datasheet PDF文件第28页  
NCP5316  
I
is the RMS value of the trapezoidal current in  
RMS,CNTL  
the control MOSFET:  
I
D
Ǹ
(20)  
I
+ D  
RMS,CNTL  
2
2
) I )ń3]  
Lo,MIN  
1ń2  
(21)  
(22)  
@ [(I  
) I  
@ I  
Lo,MAX  
Lo,MAX Lo,MIN  
V
GATE  
I
I
I
is the maximum output inductor current:  
Lo,MAX  
I
+ I  
O,MAX  
ńf ) D I ń2  
Lo  
Lo,MAX  
is the minimum output inductor current:  
V
Lo,MIN  
O,MAX  
GS_TH  
I
+ I  
O,MAX  
ńf * D I ń2  
Lo  
Lo,MIN  
is the maximum converter output current.  
Q
Q
Q
V
DRAIN  
GS1  
GS2  
GD  
D is the duty cycle of the converter:  
(23)  
D + V  
ńV  
OUT IN  
Figure 25. MOSFET Switching Characteristics  
DI is the peak−to−peak ripple current in the output  
Lo  
When the MOSFET power dissipations are known, the  
designer can calculate the required thermal impedance to  
maintain a specified junction temperature at the worst case  
ambient operating temperature.  
inductor of value L :  
o
(24)  
D I + (V * V  
Lo IN  
) @ Dń(Lo @ f )  
OUT SW  
R
DS(on)  
is the ON resistance of the MOSFET at the  
applied gate drive voltage.  
is the post gate threshold portion of the  
(28)  
q
T
t (T * T )ńP  
J A D  
Q
switch  
gate−to−sourcecharge plus the gate−to−drain charge. This  
may be specified in the data sheet or approximated from the  
gate−charge curve as shown in the Figure 25.  
(25)  
where:  
q is the total thermal impedance (q + q );  
T
JC  
SA  
q
is the junction−to−case thermal impedance of the  
JC  
MOSFET;  
is the sink−to−ambient thermal impedance of the  
Q
+ Q  
) Q  
gs2 gd  
switch  
q
SA  
I is the output current from the gate driver IC.  
g
heatsink assuming direct mounting of the MOSFET (no  
thermal “pad” is used);  
V
IN  
is the input voltage to the converter.  
f
Q
is the switching frequency of the converter.  
is the MOSFET total gate charge to obtain R  
sw  
T
is the specified maximum allowed junction  
temperature;  
J
;
DS(on)  
G
commonly specified in the data sheet.  
V is the gate drive voltage.  
T is the worst case ambient operating temperature.  
A
g
For TO−220 and TO−263 packages, standard FR−4  
copper clad circuit boards will have approximate thermal  
resistances (q ) as shown below:  
Q
Q
is the reverse recovery charge of the lower MOSFET.  
is the MOSFET output charge specified in the data  
RR  
oss  
SA  
sheet.  
For the lower or synchronous MOSFET, the power  
dissipation can be approximated from:  
Pad Size  
Single−Sided  
2
2
(in /mm )  
0.50/323  
0.75/484  
1.00/645  
1.50/968  
1 oz. Copper  
60−65°C/W  
55−60°C/W  
50−55°C/W  
45−50°C/W  
2
P
+ (I  
RMS,SYNCH  
@ R  
)
DS(on)  
D,SYNCH  
) (Vf  
(26)  
@ I  
diode O,MAX  
ń2 @ t_nonoverlap @ f )  
SW  
where:  
Vf  
is the forward voltage of the MOSFET’s intrinsic  
diode  
diode at the converter output current.  
t_nonoverlap is the non−overlap time between the upper  
and lower gate drivers to prevent cross conduction.  
This time is usually specified in the data sheet for the  
control IC.  
The first term represents the conduction or IR losses when  
the MOSFET is ON and the second term represents the diode  
losses that occur during the gate non−overlap time.  
All terms were defined in the previous discussion for the  
control MOSFET with the exception of:  
As with any power design, proper laboratory testing  
should be performed to insure the design will dissipate the  
required power under worst case operating conditions.  
Variables considered during testing should include  
maximum ambient temperature, minimum airflow,  
maximum input voltage, maximum loading and component  
variations (i.e., worst case MOSFET R  
). Also, the  
DS(on)  
inductors and capacitors share the MOSFET’s heatsinks and  
will add heat and raise the temperature of the circuit board  
and MOSFET. For any new design, it is advisable to have as  
much heatsink area as possible. All too often, new designs are  
found to be too hot and require re−design to add heatsinking.  
Ǹ
(27)  
I
+ 1 * D  
RMS,SYNCH  
2
2 1ń2  
) I )ń3]  
Lo,MIN  
@ [(I  
Lo,MAX  
) I  
@ I  
Lo,MAX Lo,MIN  
http://onsemi.com  
24  
 
 复制成功!