欢迎访问ic37.com |
会员登录 免费注册
发布采购

NCP3170ADR2G 参数 Datasheet PDF下载

NCP3170ADR2G图片预览
型号: NCP3170ADR2G
PDF下载: 下载PDF文件 查看货源
内容描述: 同步PWM开关转换器 [Synchronous PWM Switching Converter]
分类和应用: 转换器稳压器开关式稳压器或控制器电源电路开关式控制器光电二极管
文件页数/大小: 26 页 / 684 K
品牌: ONSEMI [ ONSEMI ]
 浏览型号NCP3170ADR2G的Datasheet PDF文件第17页浏览型号NCP3170ADR2G的Datasheet PDF文件第18页浏览型号NCP3170ADR2G的Datasheet PDF文件第19页浏览型号NCP3170ADR2G的Datasheet PDF文件第20页浏览型号NCP3170ADR2G的Datasheet PDF文件第22页浏览型号NCP3170ADR2G的Datasheet PDF文件第23页浏览型号NCP3170ADR2G的Datasheet PDF文件第24页浏览型号NCP3170ADR2G的Datasheet PDF文件第25页  
NCP3170  
The ESR of the output capacitor creates a “zero” at the  
determining phase margin. To start the design, a resistor  
frequency as shown in Equation 39:  
value should be chosen for R from which all other  
1
components can be chosen. A good starting value is 24.9 kW.  
The NCP3170 allows the output of the DCDC regulator  
to be adjusted down to 0.8 V via an external resistor divider  
network. The regulator will maintain 0.8 V at the feedback  
pin. Thus, if a resistor divider circuit was placed across the  
1
FZESR  
+
³
2p   COESR     COUT  
(eq. 39)  
1
723 kHz +  
2p   5 mW   44 mF  
feedback pin to V  
voltage proportional to the resistor divider network in order  
to maintain 0.8 V at the FB pin.  
, the regulator will regulate the output  
OUT  
where:  
CO  
= Output capacitor ESR  
= Output capacitor  
ESR  
C
OUT  
FZ  
= Output capacitor zero ESR frequency  
ESR  
V
OUT  
1
FP  
+
³
R1  
2p   A   COUT  
FB  
(eq. 40)  
1
10.664 kHz +  
2p   0.339 W   44 mF  
R2  
where:  
A
= Un-scaled gain  
= Output capacitor  
= Current mode pole frequency  
Figure 46. Feedback Resistor Divider  
C
OUT  
P
F
The relationship between the resistor divider network  
above and the output voltage is shown in Equation 41:  
The two equations above define the bode plot that the  
power stage has created or open loop response of the system.  
The next step is to close the loop by considering the feedback  
values. The closed loop crossover frequency should be less  
than 1/10 of the switching frequency, which would place the  
maximum crossover frequency at 50 kHz.  
VREF  
ǒ
Ǔ
R2 + R1   
(eq. 41)  
VOUT * VREF  
where:  
R
R
= Top resistor divider  
= Bottom resistor divider  
= Output voltage  
1
2
Figure 45 shows a pseudo Type III transconductance error  
amplifier.  
V
OUT  
V
REF  
= Regulator reference voltage  
The most frequently used output voltages and their  
associated standard R and R values are listed in the table  
below.  
1
2
ZIN  
CF  
R1  
R2  
IEA  
Table 7. OUTPUT VOLTAGE SETTINGS  
V
O
(V)  
R (kW)  
1
R (kW)  
2
ZFB  
0.8  
1.0  
1.1  
1.2  
1.5  
1.8  
2.5  
3.3  
5.0  
24.9  
24.9  
24.9  
24.9  
24.9  
24.9  
24.9  
24.9  
24.9  
Open  
100  
CC  
RC  
CP  
+
66.5  
49.9  
28.7  
20  
VREF  
11.8  
8.06  
4.64  
Figure 45. Pseudo Type III Transconductance Error  
Amplifier  
The compensation network consists of the internal error  
amplifier and the impedance networks Z (R , R , and C )  
IN  
1
2
F
The compensation components for the Pseudo Type III  
Transconductance Error Amplifier can be calculated using  
the method described below. The method serves to provide  
a good starting place for compensation of a power supply.  
The values can be adjusted in real time using the  
compensation tool CompCalc  
and external Z (R , C , and C ). The compensation  
FB  
C
C
P
network has to provide a closed loop transfer function with  
the highest 0 dB crossing frequency to have fast response  
and the highest gain in DC conditions, so as to minimize load  
regulation issues. A stable control loop has a gain crossing  
with 20 dB/decade slope and a phase margin greater than  
45°. Include worst-case component variations when  
http://www.onsemi.com/pub/Collateral/COMPCALC.ZIP  
http://onsemi.com  
21  
 
 复制成功!