欢迎访问ic37.com |
会员登录 免费注册
发布采购

NCP3170ADR2G 参数 Datasheet PDF下载

NCP3170ADR2G图片预览
型号: NCP3170ADR2G
PDF下载: 下载PDF文件 查看货源
内容描述: 同步PWM开关转换器 [Synchronous PWM Switching Converter]
分类和应用: 转换器稳压器开关式稳压器或控制器电源电路开关式控制器光电二极管
文件页数/大小: 26 页 / 684 K
品牌: ONSEMI [ ONSEMI ]
 浏览型号NCP3170ADR2G的Datasheet PDF文件第18页浏览型号NCP3170ADR2G的Datasheet PDF文件第19页浏览型号NCP3170ADR2G的Datasheet PDF文件第20页浏览型号NCP3170ADR2G的Datasheet PDF文件第21页浏览型号NCP3170ADR2G的Datasheet PDF文件第23页浏览型号NCP3170ADR2G的Datasheet PDF文件第24页浏览型号NCP3170ADR2G的Datasheet PDF文件第25页浏览型号NCP3170ADR2G的Datasheet PDF文件第26页  
NCP3170  
1
The first pole to crossover at the desired frequency should  
be setup at FPO to decrease at 20 dB per decade:  
RC  
+
³
2p   CC   FP  
(eq. 44)  
FCROSS  
1
2.925 kW +  
FPO  
+
³
2p   5.12 nF   1.512 kHz  
G
(eq. 42)  
50 kHz  
33.061  
where:  
1.512 kHz +  
³
C
C
F
= Compensation capacitance  
= Output capacitance  
= Current mode pole frequency  
= Compensation resistor  
C
OUT  
P
where:  
F
cross  
F
PO  
= Cross over frequency  
= Pole frequency to meet crossover  
frequency  
R
C
1
CP  
+
³
G
= DC gain of the plant  
2p   RC   FESR  
(eq. 45)  
The crossover combined compensation network can be  
used to calculate the transconductance output compensation  
network as follows:  
1
75.2 pF +  
2p   2.925 kW   723 kHz  
where:  
y   gm  
C
P
= Compensation pole capacitor  
= Capacitor ESR zero frequency  
= Compensation resistor  
CC  
+
³
2   p   FPO  
F
ESR  
(eq. 43)  
R
C
0.242   200 ms  
2p   1.512 kHz  
5.12 nF +  
If the ESR frequency is greater than the switching  
frequency, a CF compensation capacitor may be needed for  
stability as the output LC filter is considered high Q and thus  
will not give the phase boost at the crossover frequency.  
Further at low duty cycles due to some blanking and filtering  
of the current signal the current gain of the converter is not  
constant and the current gain is small. Thus adding CF and  
RF can give the needed phase boost.  
where:  
C
C
= Compensation capacitor  
= Pole frequency  
= Transconductance of amplifier  
= Amplitude ratio  
F
PO  
gm  
y
R1 ) R2  
CF  
+
³
2p   (R1 * RF ) R2 * RF ) R2 * R1)   Fcross  
(eq. 46)  
24.9 kW ) 7.87 kW  
456 pF +  
2p   (24.9 kW * 1 kW ) 7.87 kW * 1 kW ) 7.87 kW * 24.9 kW)   50 kHz  
where:  
IPK  
C
F
= Compensation pole capacitor  
= Cross over frequency  
F
cross  
gm  
= Transconductance of amplifier  
= Top resistor divider  
= Bottom resistor divider  
= Feed through resistor  
R
1
R
2
R
F
Figure 47. Input Charge Inrush Current  
VIN  
IICinrush_PK1 +  
CINESR  
Calculating Input Inrush Current  
The input inrush current has two distinct stages: input  
charging and output charging. The input charging of a buck  
stage is usually controlled, but there are times when it is not  
and is limited only by the input RC network, and the output  
impedance of the upstream power stage. If the upstream  
power stage is a perfect voltage source and switches on  
instantaneously, then the input inrush current can be  
depicted as shown in Figure 47 and calculated as:  
(eq. 47)  
12  
1.2 kA +  
0.01  
VIN  
5   CINESR   CIN  
IICinrush_RMS1 +  
  0.316   
Ǹ
tDELAY_TOTAL  
CINESR  
(eq. 48)  
12 V  
5   0.01 W   22 mF  
12.58 A +  
  0.316   
Ǹ
0.01  
1 ms  
http://onsemi.com  
22  
 
 复制成功!