欢迎访问ic37.com |
会员登录 免费注册
发布采购

HSP50110JI-52 参数 Datasheet PDF下载

HSP50110JI-52图片预览
型号: HSP50110JI-52
PDF下载: 下载PDF文件 查看货源
内容描述: 数字正交调谐器 [Digital Quadrature Tuner]
分类和应用: 电信集成电路
文件页数/大小: 24 页 / 202 K
品牌: INTERSIL [ Intersil ]
 浏览型号HSP50110JI-52的Datasheet PDF文件第9页浏览型号HSP50110JI-52的Datasheet PDF文件第10页浏览型号HSP50110JI-52的Datasheet PDF文件第11页浏览型号HSP50110JI-52的Datasheet PDF文件第12页浏览型号HSP50110JI-52的Datasheet PDF文件第14页浏览型号HSP50110JI-52的Datasheet PDF文件第15页浏览型号HSP50110JI-52的Datasheet PDF文件第16页浏览型号HSP50110JI-52的Datasheet PDF文件第17页  
HSP50110  
or 0.77 depending on whether the bypass, x/sin(x) or  
(x/sin(x)) configuration is chosen. The Compensation Filter  
NOTE: 10log (x) is used because these items are power  
10  
related.  
3
output is then rounded and limited to a 10-bit output range  
corresponding to bit positions 2 to 2 .  
Thus, the minimum input signal will then be -42.96dB below  
full scale (-30.96dB -12dB for A/D backoff). Note: in this  
example the symbol rate is assumed to be one half of the  
output sample rate (i.e., there are 2 samples per symbol).  
0
-9  
Setting DQT Gains  
The AGC and CIC Shifter gains are programmed to maintain  
the output signal at a desired level. The gain range required  
depends on the signal levels expected at the input and the A/D  
backoff required to prevent signal + noise from saturating the  
A/D. The signal level at the input is based on the input SNR  
which itself is derived from the either output SNR or output  
The output signal is related to the input signal by:  
S
= S x G  
IN MIXER  
x G  
SCALER  
x G  
AGC  
x
(EQ.13)  
(EQ. 14)  
OUT  
G
x G  
CIC  
x G  
COMP  
SHIFTER  
Using this equation, limits for G  
AGC  
and G  
can be  
SHIFTER  
determined from the minimum and maximum input signal  
conditions as given below (all gains specified in dB):  
E /N . Below are two examples which describe setting the  
S
0
gains using either an output SNR or E /N specification.  
S
0
Min Input Level (Maximum Gain Required):  
In applications based on the transmission of digital data, it is  
useful to specify the DQT’s output in terms of E /N . The  
following example uses this parameter and the others given in  
Table 4 to show how the DQT’s gain settings can be derived.  
S
0
-6.02dB -42.96 - 6.02 - 216.74 + G  
+ G  
+
AGC  
3 3  
SHIFTER  
6
20 x log((40 x 10 /32 x 10 ) ) - 2.27  
(EQ. 15)  
Max Input Level (Minimum Input Gain Required)  
TABLE 4. EXAMPLE SYSTEM PARAMETERS  
MAIN MENU  
-6.02dB -12 - 6.02 - 216.74 + G  
+ G +  
SHIFTER  
AGC  
3 3  
6
20 x log((40 x 10 /32 x 10 ) ) - 2.27  
(EQ. 16)  
PARAMETER  
ITEM  
SETTING  
40 MSPS  
32 KSPS  
10MHz  
-3dB  
Input Sample Rate  
(2)  
NOTE: 20log (x) is used because these items are  
10  
amplitude related.  
Output Sample Rate (F  
) (Notes 1, 2)  
(8), (9)  
(10)  
SOUT  
Solving the above inequalities for G  
gain range can be expressed as,  
and G  
, the  
SHIFTER  
AGC  
Input Filter Noise Bandwidth (NBW)  
Minimum Output E /N  
(15)  
S
0
45.20dB < (G  
AGC  
+ G  
) < 76.16dB.  
(EQ. 17)  
SHIFTER  
Signal + Noise Backoff at A/D Input  
Output Signal Magnitude (0 to 1)  
Number of CIC stages  
(18), (19)  
(21)  
12dB  
The shifter gain provides a programmable gain which is a  
factor of 2. Since G 1.0, G is set as close to  
the minimum gain requirement as possible:  
0.5  
AGC  
SHIFTER  
(11)  
3
N
G
= 2 ,  
(EQ. 18)  
SHIFTER  
3
Compensation Filter  
(11)  
(x/sin(x))  
where  
Noise Eq. Bandwidth of Comp. Filter  
N/A  
34.18kHz  
Real  
(G  
/20)  
(B *F  
)
SOUT  
N = floor(log (10 MIN ))  
2
N
(45.20/20)  
= floor(log (10  
2
)) = 7  
Input Type (Real/Complex)  
(4)  
The limits on the AGC gain can then be determined by  
NOTES:  
1. Two samples per symbol assumed.  
2. Decimation = 40 MSPS/32 KSPS = 1250.  
substituting the shifter gain into Equation 18 above. The  
resulting limits are given by:  
First, the maximum and minimum input signal levels must be  
determined. The maximum input signal level is achieved in a  
noise free environment where the input signal is attenuated by  
12dB as a result of the A/D backoff. The minimum input signal  
3.05dB < G  
AGC  
<34.02dB.  
(EQ. 19)  
In some applications it is more desirable to specify the DQT  
output in terms of SNR. This example, covers derivation of  
the gain settings based on an output SNR of 15dB. The  
other system parameters are given in Table 4.  
is determined by converting the minimum output E /N  
S
0
specification into an Input SNR. Using the example parameters  
As in the previous examples the minimum and maximum  
input signal levels must be determined. The minimum input  
signal strength is determined by from the minimum output  
SNR as given by:  
in Table 4 the minimum input SNR is given by:  
SNR = 10log (E /N ) + 10log (Symbol Rate)  
IN 10 10  
S
0
-10log (NBW)  
10  
3
6
= -3dB + 10log (0.5x32 x 10 ) - 10log (10 x 10 )  
10 10  
SNR = SNR  
IN OUT  
- 10log(NBW) + 10log(B x F  
)
SOUT  
N
= -30.96dB  
(EQ. 12)  
6
3
= 15 - 10log(10 x 10 ) + 10log(34.18 x 10 )  
= -9.66dB  
(EQ. 20)  
3-241  
 复制成功!