欢迎访问ic37.com |
会员登录 免费注册
发布采购

AD9268 参数 Datasheet PDF下载

AD9268图片预览
型号: AD9268
PDF下载: 下载PDF文件 查看货源
内容描述: 16位, 80 MSPS / 105 MSPS / 125 MSPS , 1.8 V双通道模拟数字转换器( ADC ) [16-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Dual Analog-to-Digital Converter (ADC)]
分类和应用: 转换器
文件页数/大小: 44 页 / 2292 K
品牌: ADI [ ADI ]
 浏览型号AD9268的Datasheet PDF文件第26页浏览型号AD9268的Datasheet PDF文件第27页浏览型号AD9268的Datasheet PDF文件第28页浏览型号AD9268的Datasheet PDF文件第29页浏览型号AD9268的Datasheet PDF文件第31页浏览型号AD9268的Datasheet PDF文件第32页浏览型号AD9268的Datasheet PDF文件第33页浏览型号AD9268的Datasheet PDF文件第34页  
AD9268  
External Reference Operation  
The RF balun configuration is recommended for clock frequencies  
between 125 MHz and 625 MHz, and the RF transformer is recom-  
mended for clock frequencies from 10 MHz to 200 MHz. The  
back-to-back Schottky diodes across the transformer/balun  
secondary limit clock excursions into the AD9268 to approx-  
imately 0.8 V p-p differential.  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift charac-  
teristics. Figure 73 shows the typical drift characteristics of the  
internal reference in 1.0 V mode.  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
reference buffer loads the external reference with an equivalent  
6 kΩ load (see Figure 62). The internal buffer generates the positive  
and negative full-scale references for the ADC core. Therefore,  
the external reference must be limited to a maximum of 1.0 V.  
2.0  
This limit helps prevent the large voltage swings of the clock  
from feeding through to other portions of the AD9268 while  
preserving the fast rise and fall times of the signal that are critical  
to a low jitter performance.  
®
Mini-Circuits  
ADC  
ADT1-1WT, 1:1Z  
AD9268  
0.1µF  
0.1µF  
XFMR  
CLOCK  
INPUT  
1.5  
CLK+  
CLK–  
100Ω  
VREF = 1.0V  
1.0  
50Ω  
0.1µF  
SCHOTTKY  
DIODES:  
HSMS2822  
0.5  
0
0.1µF  
Figure 75. Transformer-Coupled Differential Clock (Up to 200 MHz)  
–0.5  
–1.0  
ADC  
AD9268  
1nF  
50Ω  
1nF  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
–1.5  
–2.0  
CLK–  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
SCHOTTKY  
DIODES:  
HSMS2822  
Figure 73. Typical VREF Drift  
Figure 76. Balun-Coupled Differential Clock (Up to 625 MHz)  
CLOCK INPUT CONSIDERATIONS  
If a low jitter clock source is not available, another option is to  
ac couple a differential PECL signal to the sample clock input  
pins, as shown in Figure 77. The AD9510/AD9511/AD9512/  
AD9513/AD9514/AD9515/AD9516/AD9517/AD9518 clock  
drivers offer excellent jitter performance.  
For optimum performance, the AD9268 sample clock inputs,  
CLK+ and CLK−, should be clocked with a differential signal.  
The signal is typically ac-coupled into the CLK+ and CLK− pins  
via a transformer or capacitors. These pins are biased internally  
(see Figure 74) and require no external bias. If the inputs are  
floated, the CLK− pin is pulled low to prevent spurious clocking.  
AVDD  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
ADC  
AD9268  
AD951x  
PECL DRIVER  
100  
0.9V  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
CLK+  
CLK–  
240Ω  
240Ω  
50kΩ  
50kΩ  
4pF  
4pF  
Figure 77. Differential PECL Sample Clock (Up to 625 MHz)  
A third option is to ac couple a differential LVDS signal to the  
sample clock input pins, as shown in Figure 78. The AD9510/  
AD9511/AD9512/AD9513/AD9514/AD9515/AD9516/AD9517/  
AD9518 clock drivers offer excellent jitter performance.  
Figure 74. Equivalent Clock Input Circuit  
Clock Input Options  
The AD9268 has a very flexible clock input structure. Clock input  
can be a CMOS, LVDS, LVPECL, or sine wave signal. Regardless of  
the type of signal being used, clock source jitter is of the most  
concern, as described in the Jitter Considerations section.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
ADC  
AD9268  
AD951x  
LVDS DRIVER  
100  
0.1µF  
Figure 75 and Figure 76 show two preferred methods for clocking  
the AD9268 (at clock rates up to 625 MHz). A low jitter clock  
source is converted from a single-ended signal to a differential  
signal using either an RF balun or an RF transformer.  
0.1µF  
CLOCK  
INPUT  
CLK–  
50kΩ  
50kΩ  
Figure 78. Differential LVDS Sample Clock (Up to 625 MHz)  
Rev. A | Page 3± of 44  
 
 
 
 
 
 
 
 复制成功!