欢迎访问ic37.com |
会员登录 免费注册
发布采购

AD7769JP 参数 Datasheet PDF下载

AD7769JP图片预览
型号: AD7769JP
PDF下载: 下载PDF文件 查看货源
内容描述: LC2MOS模拟量I / O端口 [LC2MOS Analog I/O Port]
分类和应用:
文件页数/大小: 16 页 / 267 K
品牌: ADI [ ADI ]
 浏览型号AD7769JP的Datasheet PDF文件第2页浏览型号AD7769JP的Datasheet PDF文件第3页浏览型号AD7769JP的Datasheet PDF文件第4页浏览型号AD7769JP的Datasheet PDF文件第5页浏览型号AD7769JP的Datasheet PDF文件第7页浏览型号AD7769JP的Datasheet PDF文件第8页浏览型号AD7769JP的Datasheet PDF文件第9页浏览型号AD7769JP的Datasheet PDF文件第10页  
AD7769  
P IN FUNCTIO N D ESCRIP TIO N  
P in  
Mnem onic  
D escription  
1
VDD  
+12 V Power Supply. T his powers the analog circuitry.  
+5 V Power Supply. T his powers the logic circuitry.  
2
VCC  
3–10  
DB7–DB0  
Input/Output Data Bus. A bidirectional data port from which ADC output data may be read  
and to which DAC input data may be written. DB7 is the Most Significant Bit.  
11  
12  
INT  
Interrupt Output (active low). INT is set high on the falling edge of RD or WR to the ADC  
and goes low at the end of a conversion.  
CLK  
Clock input. A clock is required for the ADC. An external T T L-compatible clock may be applied to  
this input pin. Alternatively, tying this pin to VDD enables the internal clock oscillator. With an  
external clock, the mark-space ratio can vary from 30/70 to 70/30.  
13  
CHA/CHB  
Channel A/Channel B Select Input. Selects Channel A or Channel B of the DAC or ADC.  
Used in conjunction with WR, RD, CS and ADC/DAC for read or write operations.  
14  
15  
DGND  
Digital Ground.  
ADC/DAC  
ADC or DAC Select Input. Selects either the ADC or the DAC for read or write operations in  
conjunction with WR, RD, CS and CHA/CHB.  
16  
WR  
Write Input (edge triggered). T his is used in conjunction with the ADC/DAC, CHA/CHB and CS  
control inputs to start an ADC conversion or write data to the DAC. An ADC conversion starts on the  
rising edge of WR.  
17  
18  
19  
RD  
Read Input (active low). T his input must be low to access data from the ADC.  
Chip Select Input (active low). T he device is selected when this input is low.  
CS  
VSWING (ADC)  
ADC Reference Input. T he voltage applied to this pin with respect to AGND (ADC) sets the  
in put voltage Full-Scale Range (FSR) of the ADC. VIN (FSR) = 2 VSWING (ADC).  
20  
21  
22  
AGND (ADC)  
ADC Analog Ground.  
VINB  
Analog Input for Channel B. See VINA description.  
VBIAS (ADC)  
ADC Reference Input. T he voltage applied to this pin with respect to AGND (ADC) sets the  
midpoint of the ADC transfer function.  
23  
VINA  
Analog Input for Channel A. T he input voltage range of both ADC channels is given by:  
VIN A/B = VBIAS (ADC) ±VSWING (ADC).  
24  
25  
AGND (DAC)  
VSWING (DAC)  
DAC Analog Ground.  
DAC Reference Input. T he voltage applied to this pin with respect to AGND (DAC) sets the  
output voltage Full-Scale Range (FSR) of the DACs. VOUT (FSR) = 2 VSWING (DAC).  
26  
27  
VOUT  
B
Analog Output Voltage from DAC B. See VOUT A description.  
VBIAS (DAC)  
DAC Reference Input. T he voltage applied to this pin with respect to AGND (DAC) sets the  
midpoint output voltage of the DACs.  
28  
VOUT  
A
Analog Output Voltage from DAC A. T he output voltage range of both DACs is given by:  
VOUT A/B = VBIAS (DAC) ± VSWING (DAC).  
TERMINO LO GY  
Relative Accur acy  
D iffer ential Nonlinear ity  
For an ADC, Relative Accuracy or endpoint nonlinearity is the  
maximum deviation, in LSBs, of the ADC’s actual code transi-  
tion points from a straight line drawn between the endpoints of  
the ADC transfer function, i.e., the 00 to 01 and FE to FF Hex  
(01111111 to 11111111 Binary) code transitions.  
Differential Nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of ±1 LSB max en-  
sures monotonicity (DAC) or no missed codes (ADC).  
Bias O ffset Er r or  
For a DAC, Relative Accuracy or endpoint nonlinearity is a  
measure of the maximum deviation, in LSBs, from a straight  
line passing through the endpoints of the DAC transfer func-  
tion, i.e., those voltages which correspond to codes 00 and FF  
Hex.  
For an ideal ADC, the output code for an input voltage equal to  
VBIAS (ADC), should be 80 Hex (10000000 binary). T he ADC  
Bias Offset Error is the difference between the actual midpoint  
voltage for code 80 Hex and VBIAS (ADC), expressed in LSBs.  
For an ideal DAC, the output voltage for code 80 Hex should  
be equal to VBIAS (DAC). T he DAC Bias Offset Error is the  
difference between the actual output voltage and VBIAS (DAC),  
expressed in LSBs.  
For the specified input and output ranges, 1 LSB = 19.5 mV,  
but will vary with VSWING. For both DACs and ADC,  
1 LSB = 2 VSWING /256 = FSR/256.  
REV. A  
–6–  
 复制成功!