欢迎访问ic37.com |
会员登录 免费注册
发布采购

UPSD3412C-24U6T 参数 Datasheet PDF下载

UPSD3412C-24U6T图片预览
型号: UPSD3412C-24U6T
PDF下载: 下载PDF文件 查看货源
内容描述: 闪存可编程系统设备与8032单片机内核和16Kbit的SRAM [Flash Programmable System Devices with 8032 Microcontroller Core and 16Kbit SRAM]
分类和应用: 闪存静态存储器微控制器
文件页数/大小: 152 页 / 1492 K
品牌: STMICROELECTRONICS [ ST ]
 浏览型号UPSD3412C-24U6T的Datasheet PDF文件第54页浏览型号UPSD3412C-24U6T的Datasheet PDF文件第55页浏览型号UPSD3412C-24U6T的Datasheet PDF文件第56页浏览型号UPSD3412C-24U6T的Datasheet PDF文件第57页浏览型号UPSD3412C-24U6T的Datasheet PDF文件第59页浏览型号UPSD3412C-24U6T的Datasheet PDF文件第60页浏览型号UPSD3412C-24U6T的Datasheet PDF文件第61页浏览型号UPSD3412C-24U6T的Datasheet PDF文件第62页  
UPSD3212C, UPSD3212CV  
STANDARD SERIAL INTERFACE (UART)  
The uPSD321X Devices provides two standard  
8032 UART serial ports. The first port is connected  
to pin P3.0 (RX) and P3.1 (TX). The second port is  
connected to pin P1.2 (RX) and P1.3(TX). The op-  
eration of the two serial ports are the same and are  
controlled by the SCON and SCON2 registers.  
Mode 3. 11 bits are transmitted (through TxD) or  
received (through RxD): a Start Bit (0), 8 data bits  
(LSB first), a programmable 9th data bit, and a  
Stop Bit (1). In fact, Mode 3 is the same as Mode  
2 in all respects except baud rate. The baud rate  
in Mode 3 is variable.  
The serial port is full duplex, meaning it can trans-  
mit and receive simultaneously. It is also receive-  
buffered, meaning it can commence reception of a  
second byte before a previously received byte has  
been read from the register. (However, if the first  
byte still has not been read by the time reception  
of the second byte is complete, one of the bytes  
will be lost.) The serial port receive and transmit  
registers are both accessed at Special Function  
Register SBUF (or SBUF2 for the second serial  
port). Writing to SBUF loads the transmit register,  
and reading SBUF accesses a physically separate  
receive register.  
In all four modes, transmission is initiated by any  
instruction that uses SBUF as a destination regis-  
ter. Reception is initiated in Mode 0 by the condi-  
tion RI = 0 and REN = 1. Reception is initiated in  
the other modes by the incoming start bit if REN =  
1.  
Multiprocessor Communications  
Modes 2 and 3 have a special provision for multi-  
processor communications. In these modes, 9  
data bits are received. The 9th one goes into RB8.  
Then comes a Stop Bit. The port can be pro-  
grammed such that when the Stop Bit is received,  
the serial port interrupt will be activated only if RB8  
= 1. This feature is enabled by setting Bit SM2 in  
SCON. A way to use this feature in multi-proces-  
sor systems is as follows:  
The serial port can operate in 4 modes:  
Mode 0. Serial data enters and exits through  
RxD. TxD outputs the shift clock. 8 bits are trans-  
mitted/received (LSB first). The baud rate is fixed  
When the master processor wants to transmit a  
block of data to one of several slaves, it first sends  
out an address byte which identifies the target  
slave. An address byte differs from a data byte in  
that the 9th bit is '1' in an address byte and 0 in a  
data byte. With SM2 = 1, no slave will be interrupt-  
ed by a data byte. An ad-dress byte, however, will  
interrupt all slaves, so that each slave can exam-  
ine the received byte and see if it is being ad-  
dressed. The addressed slave will clear its SM2  
Bit and prepare to receive the data bytes that will  
be coming. The slaves that weren’t being ad-  
dressed leave their SM2s set and go on about  
their business, ignoring the coming data bytes.  
at 1/12 the f  
.
OSC  
Mode 1. 10 bits are transmitted (through TxD) or  
received (through RxD): a start Bit (0), 8 data bits  
(LSB first), and a Stop Bit (1). On receive, the Stop  
Bit goes into RB8 in Special Function Register  
SCON. The baud rate is variable.  
Mode 2. 11 bits are transmitted (through TxD) or  
received (through RxD): start Bit (0), 8 data bits  
(LSB first), a programmable 9th data bit, and a  
Stop Bit (1). On Transmit, the 9th data bit (TB8 in  
SCON) can be assigned the value of '0' or '1.' Or,  
for example, the Parity Bit (P, in the PSW) could  
be moved into TB8. On receive, the 9th data bit  
goes into RB8 in Special Function Register SCON,  
while the Stop Bit is ignored. The baud rate is pro-  
grammable to either 1/32 or 1/64 the oscillator fre-  
quency.  
SM2 has no effect in Mode 0, and in Mode 1 can  
be used to check the validity of the Stop Bit. In a  
Mode 1 reception, if SM2 = 1, the Receive Inter-  
rupt will not be activated unless a valid Stop Bit is  
received.  
58/152  
 复制成功!