欢迎访问ic37.com |
会员登录 免费注册
发布采购

HYS72T64000HU-3-B 参数 Datasheet PDF下载

HYS72T64000HU-3-B图片预览
型号: HYS72T64000HU-3-B
PDF下载: 下载PDF文件 查看货源
内容描述: 240针无缓冲DDR2 SDRAM模组 [240-Pin unbuffered DDR2 SDRAM Modules]
分类和应用: 动态存储器双倍数据速率
文件页数/大小: 87 页 / 5113 K
品牌: QIMONDA [ QIMONDA AG ]
 浏览型号HYS72T64000HU-3-B的Datasheet PDF文件第18页浏览型号HYS72T64000HU-3-B的Datasheet PDF文件第19页浏览型号HYS72T64000HU-3-B的Datasheet PDF文件第20页浏览型号HYS72T64000HU-3-B的Datasheet PDF文件第21页浏览型号HYS72T64000HU-3-B的Datasheet PDF文件第23页浏览型号HYS72T64000HU-3-B的Datasheet PDF文件第24页浏览型号HYS72T64000HU-3-B的Datasheet PDF文件第25页浏览型号HYS72T64000HU-3-B的Datasheet PDF文件第26页  
Internet Data Sheet  
HYS[64/72]T[32/64/128]xx0HU-[25F/2.5/3/3S/3.7/5]-B  
Unbuffered DDR2 SDRAM Module  
3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down  
and then restarted through the specified initialization sequence before normal operation can continue.  
4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew  
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.  
5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,  
input reference level is the crosspoint when in differential strobe mode.  
6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.  
7) The output timing reference voltage level is VTT  
.
8) New units, ‘tCK.AVG‘ and ‘nCK‘, are introduced in DDR2–667 and DDR2–800. Unit ‘tCK.AVG‘ represents the actual tCK.AVG of the input clock  
under operation. Unit ‘nCK‘ represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2–400 and  
DDR2–533, ‘tCK‘ is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command  
may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min)  
.
9) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output  
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tERR(6-10PER).MIN = – 272  
ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN tERR(6-10PER).MAX = – 400 ps – 293 ps = – 693 ps and  
tDQSCK.MAX(DERATED) = tDQSCK.MAX tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2–667 derates to tLZ.DQ.MIN(DERATED)  
= - 900 ps – 293 ps = – 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!)  
10) Input clock jitter spec parameter. These parameters are referred to as 'input clock jitter spec parameters' and these parameters apply to  
DDR2–667 and DDR2–800 only. The jitter specified is a random jitter meeting a Gaussian distribution.  
11) These parameters are specified per their average values, however it is understood that the relationship between the average timing and  
the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations ).  
12) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the  
entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during  
the time period of tIS + 2 x tCK + tIH.  
13) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result  
of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For  
DDR2–533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks.  
14) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR.  
15) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to  
the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing  
at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and  
VIH.DC.MIN. See Figure 4.  
16) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output  
slew rate mismatch between DQS / DQS and associated DQ in any given cycle.  
17) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing.  
The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal  
crossing. That is, these parameters should be met whether clock jitter is present or not.  
18) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level  
to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe  
crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN. See  
Figure 4.  
19) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed.  
20) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal  
((L/U/R)DQS / DQS) crossing.  
21) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter.  
It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the  
following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the  
minimum of the actual instantaneous clock low time.  
22) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level  
which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) .  
23) Input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied  
to the device under test. See Figure 5.  
24) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied  
to the device under test. See Figure 5.  
25) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to  
its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC  
,
etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should  
be met whether clock jitter is present or not.  
Rev. 1.3, 2006-12  
22  
03292006-6GMD-RSFT  
 复制成功!