欢迎访问ic37.com |
会员登录 免费注册
发布采购

HYS72T64000HU-3-B 参数 Datasheet PDF下载

HYS72T64000HU-3-B图片预览
型号: HYS72T64000HU-3-B
PDF下载: 下载PDF文件 查看货源
内容描述: 240针无缓冲DDR2 SDRAM模组 [240-Pin unbuffered DDR2 SDRAM Modules]
分类和应用: 动态存储器双倍数据速率
文件页数/大小: 87 页 / 5113 K
品牌: QIMONDA [ QIMONDA AG ]
 浏览型号HYS72T64000HU-3-B的Datasheet PDF文件第19页浏览型号HYS72T64000HU-3-B的Datasheet PDF文件第20页浏览型号HYS72T64000HU-3-B的Datasheet PDF文件第21页浏览型号HYS72T64000HU-3-B的Datasheet PDF文件第22页浏览型号HYS72T64000HU-3-B的Datasheet PDF文件第24页浏览型号HYS72T64000HU-3-B的Datasheet PDF文件第25页浏览型号HYS72T64000HU-3-B的Datasheet PDF文件第26页浏览型号HYS72T64000HU-3-B的Datasheet PDF文件第27页  
Internet Data Sheet  
HYS[64/72]T[32/64/128]xx0HU-[25F/2.5/3/3S/3.7/5]-B  
Unbuffered DDR2 SDRAM Module  
26) tQH = tHP tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under the  
max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.}  
Examples: 1) If the system provides tHP of 1315 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system  
provides tHP of 1420 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 1080 ps minimum.  
27) tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is  
transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next  
transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation  
of the output drivers.  
28) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving  
(tRPST), or begins driving (tRPRE). Figure 3 shows a method to calculate these points when the device is no longer driving (tRPST), or begins  
driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the  
calculation is consistent.  
29) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output  
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.PER.MIN = – 72 ps  
and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG – 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX  
+ tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!).  
30) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output  
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.DUTY.MIN = – 72 ps  
and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG – 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX  
+ tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!).  
31) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock  
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in  
clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which tRP = 15 ns, the device will support  
tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at  
Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter.  
32) tWTR is at lease two clocks (2 x tCK) independent of operation frequency.  
TABLE 17  
DRAM Component Timing Parameter by Speed Grade - DDR2–667  
Parameter  
Symbol  
DDR2–667  
Unit  
Note  
1)2)3)4)5)6)7)8)  
Min.  
Max.  
9)  
DQ output access time from CK / CK  
CAS to CAS command delay  
Average clock high pulse width  
Average clock period  
tAC  
–450  
2
+450  
ps  
tCCD  
nCK  
tCK.AVG  
ps  
10)11)  
12)  
tCH.AVG  
tCK.AVG  
0.48  
3000  
3
0.52  
8000  
CKE minimum pulse width ( high and low pulse tCKE  
nCK  
width)  
10)11)  
13)14)  
Average clock low pulse width  
tCL.AVG  
0.48  
0.52  
tCK.AVG  
nCK  
ns  
Auto-Precharge write recovery + precharge time tDAL  
WR + tnRP  
Minimum time clocks remain ON after CKE  
asynchronously drops LOW  
tDELAY  
tIS + tCK .AVG  
tIH  
+
19)20)15)  
9)  
DQ and DM input hold time  
tDH.BASE  
tDIPW  
tDQSCK  
tDQSH  
175  
ps  
DQ and DM input pulse width for each input  
DQS output access time from CK / CK  
DQS input high pulse width  
0.35  
–400  
0.35  
0.35  
tCK.AVG  
ps  
+400  
tCK.AVG  
tCK.AVG  
ps  
DQS input low pulse width  
tDQSL  
16)  
17)  
DQS-DQ skew for DQS & associated DQ signals tDQSQ  
240  
+ 0.25  
DQS latching rising transition to associated clock tDQSS  
– 0.25  
tCK.AVG  
edges  
Rev. 1.3, 2006-12  
23  
03292006-6GMD-RSFT  
 复制成功!