欢迎访问ic37.com |
会员登录 免费注册
发布采购

MAX8731A 参数 Datasheet PDF下载

MAX8731A图片预览
型号: MAX8731A
PDF下载: 下载PDF文件 查看货源
内容描述: SMBus的Level 2电池充电器,提供远端检测 [SMBus Level 2 Battery Charger with Remote Sense]
分类和应用: 电池
文件页数/大小: 32 页 / 390 K
品牌: MAXIM [ MAXIM INTEGRATED PRODUCTS ]
 浏览型号MAX8731A的Datasheet PDF文件第20页浏览型号MAX8731A的Datasheet PDF文件第21页浏览型号MAX8731A的Datasheet PDF文件第22页浏览型号MAX8731A的Datasheet PDF文件第23页浏览型号MAX8731A的Datasheet PDF文件第25页浏览型号MAX8731A的Datasheet PDF文件第26页浏览型号MAX8731A的Datasheet PDF文件第27页浏览型号MAX8731A的Datasheet PDF文件第28页  
SMBus Level 2 Battery Charger  
with Remote Sense  
greater than 10MΩ. The voltage amplifier transconduc-  
Compensation  
The charge-voltage and charge-current regulation  
loops are independent and compensated separately at  
the CCV, CCI, and CCS.  
tance, GMV = 0.125µA/mV. The DC-DC converter  
transconductance is dependent upon the charge-cur-  
rent sense resistor RS2:  
CCV Loop Compensation  
The simplified schematic in Figure 7 is sufficient to  
describe the operation of the MAX8731A when the volt-  
age loop (CCV) is in control. The required compensa-  
1
GM  
=
OUT  
A
×RS2  
CSI  
where A  
= 20V/V, and RS2 = 10mΩ in the typical  
CSI  
tion network is a pole-zero pair formed with C  
and  
CV  
application circuits, so GM  
fer function is given by:  
= 5A/V. The loop-trans-  
OUT  
R
. The zero is necessary to compensate the pole  
formed by the output capacitor and the load. R  
CV  
is  
ESR  
the equivalent series resistance (ESR) of the charger  
output capacitor (C ). R is the equivalent charger  
LTF = GM  
×R ×GMV ×R  
L OGMV  
OUT  
OUT  
L
output load, where R = ΔV  
/ ΔI . The equiva-  
(1+sC  
×R  
)(1+sC ×R  
)
L
BATT  
CHG  
OUT  
ESR  
CV  
CV  
×
lent output impedance of the GMV amplifier, R  
, is  
OGMV  
(1+sC ×R  
)(1+sC  
×R )  
CV  
OGMV  
OUT L  
The poles and zeros of the voltage loop-transfer function  
are listed from lowest frequency to highest frequency in  
Table 5.  
FBS_  
GM  
OUT  
Near crossover C  
is much lower impedance than  
CV  
R
. Since C is in parallel with R  
, C dom-  
OGMV  
CV  
OGMV CV  
R
L
R
ESR  
inates the parallel impedance near crossover.  
Additionally, R  
is much higher impedance than C  
CV  
CV  
C
OUT  
CCV  
and dominates the series combination of R and C  
,
CV  
CV  
GMV  
so near crossover:  
R
CV  
R
OGMV  
R
× (1+sC ×R  
)
OGMV  
CV  
CV  
R  
CV  
ChargeVoltage( )  
(1+sC ×R  
)
CV  
OGMV  
C
CV  
Figure 7. CCV Loop Diagram  
Table 5. CCV Loop Poles and Zeros  
NAME  
EQUATION  
DESCRIPTION  
1
f
=
CCV Pole  
Lowest frequency pole created by C and GMV’s finite output resistance.  
CV  
P_CV  
2πR  
× C  
CV  
OGMV  
Voltage-loop compensation zero. If this zero is at the same frequency or  
lower than the output pole f  
, then the loop-transfer function  
P_OUT  
1
f
=
CCV Zero  
approximates a single-pole response near the crossover frequency. Choose  
to place this zero at least 1 decade below crossover to ensure  
Z_CV  
2πR × C  
CV  
CV  
C
CV  
adequate phase margin.  
Output pole formed with the effective load resistance R and the output  
L
1
Output  
Pole  
f
f
=
=
P_OUT  
P_OUT  
capacitance C . R influences the DC gain but does not affect the  
OUT L  
2πR × C  
L
OUT  
OUT  
stability of the system or the crossover frequency.  
Output ESR Zero. This zero can keep the loop from crossing unity gain if  
1
Output  
Zero  
f
is less than the desired crossover frequency; therefore, choose a  
Z_OUT  
2πR × C  
L
capacitor with an ESR zero greater than the crossover frequency.  
24 ______________________________________________________________________________________  
 复制成功!