欢迎访问ic37.com |
会员登录 免费注册
发布采购

MAX770CSA 参数 Datasheet PDF下载

MAX770CSA图片预览
型号: MAX770CSA
PDF下载: 下载PDF文件 查看货源
内容描述: 5V / 12V / 15V或可调,高效率,低IQ ,升压型DC-DC控制器 [5V/12V/15V or Adjustable, High-Efficiency, Low IQ, Step-Up DC-DC Controllers]
分类和应用: 开关光电二极管信息通信管理控制器
文件页数/大小: 20 页 / 207 K
品牌: MAXIM [ MAXIM INTEGRATED PRODUCTS ]
 浏览型号MAX770CSA的Datasheet PDF文件第12页浏览型号MAX770CSA的Datasheet PDF文件第13页浏览型号MAX770CSA的Datasheet PDF文件第14页浏览型号MAX770CSA的Datasheet PDF文件第15页浏览型号MAX770CSA的Datasheet PDF文件第16页浏览型号MAX770CSA的Datasheet PDF文件第18页浏览型号MAX770CSA的Datasheet PDF文件第19页浏览型号MAX770CSA的Datasheet PDF文件第20页  
5 V/1 2 V/1 5 V o r Ad ju s t a b le , High-Effic ie nc y,  
Low I , Ste p-Up DC-DC Controlle rs  
Q
0–MAX73  
The two most sig nific a nt losse s c ontributing to the  
N-FETs power dissipation are I R losses and switching  
rent I  
. Calculate I as follows:  
C(PEAK) B  
2
I = I /ß  
B
LIM  
losses. Select a transistor with low r  
and low  
DS(ON)  
Use the worst-case (lowest) value for ß given in the  
transistors electrical specification, where the collector  
current used for the test is approximately equal to I  
It may be necessary to use even higher base currents  
(e.g., I = I /10), although excessive I may impair  
operation by extending the transistors turn-off time.  
C
to minimize these losses.  
RSS  
Determine the maximum required gate-drive current  
.
LIM  
from the Q specification in the N-FET data sheet.  
g
The MAX773s maximum allowed switching frequency  
during normal operation is 300kHz; but at start-up the  
maximum frequency can be 500kHz, so the maximum  
c urre nt re q uire d to c ha rg e the N-FETs g a te is  
B
LIM  
B
R
is determined by:  
BASE  
f(max) x Q (typ). Use the typical Q number from the  
g
g
V
- V - V  
BE CS  
(
(min ))  
EXTH  
transistor data sheet. For example, the Si9410DY has a  
Q (typ) of 17nC (at V = 5V), therefore the current  
R
BASE  
= ————————————–  
I
B
g
GS  
required to charge the gate is:  
Where V  
mode V  
is the voltage at V+ (in bootstrapped  
EXTH  
is the output voltage), V is the 0.7V  
EXTH BE  
I
= (500kHz) (17nC) = 8.5mA.  
GATE  
(max)  
transistor base-emitter voltage, V (min) is the voltage  
drop across the current-sense resistor, and I is the  
minimum base current that forces the transistor into  
saturation. This equation reduces to (V+ - 700mV -  
170mV) / I .  
CS  
The bypass capacitor on V+ (C2) must instantaneously  
furnish the gate charge without excessive droop (e.g.,  
less than 200mV):  
B
Q
g
B
V+ = ——  
C2  
For maximum efficiency, make R  
as large as pos-  
BASE  
s ib le , b ut s ma ll e noug h to e ns ure the tra ns is tor is  
always driven near saturation. Highest efficiency is  
ob ta ine d with a fa s t-s witc hing NPN tra ns is tor  
Continuing with the example, V+ = 17nC/0.1µF = 170mV.  
Us e I  
whe n c a lc ula ting the a p p rop ria te s hunt  
GATE  
resistor. See the Shunt Regulator Operation section.  
(f 150MHz) with a low collector-emitter saturation  
T
Figure 2as application circuit uses an MTD3055EL  
logic-level N-FET with a guaranteed threshold voltage  
(V ) of 2V. Figure 2bs application circuit uses an  
TH  
voltage and a high current gain. A good transistor to  
use is the Zetex ZTX694B.  
Dio d e S e le c t io n  
The MAX770–MAX773s hig h s witc hing fre q ue nc y  
demands a high-speed rectifier. Schottky diodes such  
as the 1N5817–1N5822 are recommended. Make sure  
tha t the Sc hottky d iod e s a ve ra g e c urre nt ra ting  
8-pin Si9410DY surface-mount N-FET that has 50mΩ  
on resistance with 4.5V V , and a guaranteed V of  
GS  
TH  
less than 3V.  
NPN Transistors  
The MAX773 c a n d rive NPN tra ns is tors , b ut b e  
extremely careful when determining the base-current  
requirements. Too little base current can cause exces-  
sive power dissipation in the transistor; too much base  
current can cause the base to oversaturate, so the tran-  
sistor remains on continually. Both conditions can dam-  
age the transistor.  
exceeds the peak current limit set by R , and that  
SENSE  
its breakdown voltage exceeds V . For high-temper-  
OUT  
ature applications, Schottky diodes may be inadequate  
due to their high leakage currents; high-speed silicon  
diodes may be used instead. At heavy loads and high  
temperatures, the benefits of a Schottky diodes low for-  
ward voltage may outweigh the disadvantages of its  
high leakage current.  
When using the MAX773 with an NPN transistor, con-  
nect EXTL to the transistors base, and connect R  
between EXTH and the base (Figure 8c).  
BASE  
Ca p a c it o r S e le c t io n  
Output Filter Capacitor  
The p rima ry c rite rion for s e le c ting the outp ut filte r  
capacitor (C2) is low effective series resistance (ESR).  
The product of the peak inductor current and the output  
filter capacitors ESR determines the amplitude of the  
ripple seen on the output voltage. An OS-CON 300µF,  
6.3V output filter capacitor has approximately 50mof  
ESR a nd typ ic a lly p rovid e s 180mV rip p le whe n  
s te p p ing up from 3V to 5V a t 1A (Fig ure 2a ).  
To d e te rmine the re q uire d p e a k ind uc tor c urre nt,  
), observe the Typical Operating Characteristics  
efficiency graphs and the theoretical output current  
c a p a b ility vs . inp ut volta g e g ra p hs to d e te rmine a  
sense resistor that will allow the desired output current.  
Divide the 170mV worst-case (smallest) voltage across  
I
C(PEAK  
the current-sense amplifier V (max) by the sense-  
CS  
resistor value. To determine I , set the peak inductor  
B
current (I  
equal to the peak transistor collector cur-  
LIM)  
______________________________________________________________________________________  
17  
 复制成功!