欢迎访问ic37.com |
会员登录 免费注册
发布采购

MAX1908|MAX8724 参数 Datasheet PDF下载

MAX1908|MAX8724图片预览
型号: MAX1908|MAX8724
PDF下载: 下载PDF文件 查看货源
内容描述: 低成本,多种电池充电器\n [Low-Cost Multichemistry Battery Chargers ]
分类和应用: 电池
文件页数/大小: 27 页 / 604 K
品牌: MAXIM [ MAXIM INTEGRATED PRODUCTS ]
 浏览型号MAX1908|MAX8724的Datasheet PDF文件第17页浏览型号MAX1908|MAX8724的Datasheet PDF文件第18页浏览型号MAX1908|MAX8724的Datasheet PDF文件第19页浏览型号MAX1908|MAX8724的Datasheet PDF文件第20页浏览型号MAX1908|MAX8724的Datasheet PDF文件第22页浏览型号MAX1908|MAX8724的Datasheet PDF文件第23页浏览型号MAX1908|MAX8724的Datasheet PDF文件第24页浏览型号MAX1908|MAX8724的Datasheet PDF文件第25页  
Low-Cost Multichemistry Battery Chargers  
The 22µF ceramic capacitor has a typical ESR of  
CCI Loop Definitions  
0.003, which sets the output zero at 2.412MHz.  
Compensation of the CCI loop depends on the parame-  
ters and components shown in Figure 7. C is the CCI  
CI  
The output pole is set at:  
loop compensation capacitor. A  
is the internal gain  
CSI  
of the current-sense amplifier. RS2 is the charge cur-  
1
f
=
= 1.08kHz  
P _OUT  
rent-sense resistor, RS2 = 15m. R  
is the equiva-  
OGMI  
2πR × C  
L
OUT  
lent output impedance of the GMI amplifier 10M.  
GMI is the charge-current amplifier transconductance  
where:  
= 1µA/mV. GM  
is the DC-DC converter transcon-  
OUT  
ductance = 3.3A/V. The CCI loop is a single-pole sys-  
V  
I  
BATT  
CHG  
tem with a dominant pole compensation set by f  
:
R
=
= Battery ESR  
P_CI  
L
1
f
=
P _CI  
Set the compensation zero (f  
) such that it is equiv-  
Z_CV  
2πR  
× C  
CI  
OGMI  
alent to the output pole (f  
= 1.08kHz), effectively  
P_OUT  
producing a pole-zero cancellation and maintaining a  
single-pole system response:  
The loop transfer function is given by:  
R
1
OGMI  
LTF = GM  
× A ×RS2×GMI  
CSI  
f
=
OUT  
Z _CV  
1+sR  
×C  
2πR  
× C  
OGMI  
CI  
CV  
CV  
Since:  
1
C
=
=147nF  
1
CV  
2πR ×1.08kHz  
GM  
=
CV  
OUT  
A
× RS2  
CSI  
Choose C  
= 100nF, which sets the compensation  
CV  
The loop transfer function simplifies to:  
zero (f  
) at 1.6kHz. This sets the compensation pole:  
Z_CV  
1
R
OGMI  
f
=
= 0.16Hz  
LTF = GMI ×  
P _CV  
2πR  
× C  
CV  
1+sR  
×C  
OGMV  
OGMI  
CI  
CCV LOOP PHASE  
vs. FREQUENCY  
CCV LOOP GAIN  
vs. FREQUENCY  
80  
60  
-45  
-60  
40  
-75  
20  
-90  
0
-105  
-120  
-135  
-20  
-40  
-60  
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 6. CCV Loop Gain/Phase vs. Frequency  
______________________________________________________________________________________ 21  
 复制成功!