欢迎访问ic37.com |
会员登录 免费注册
发布采购

MAX1711EEG 参数 Datasheet PDF下载

MAX1711EEG图片预览
型号: MAX1711EEG
PDF下载: 下载PDF文件 查看货源
内容描述: 高速,数字可调,降压型控制器,用于笔记本电脑 [High-Speed, Digitally Adjusted Step-Down Controllers for Notebook CPUs]
分类和应用: 稳压器开关式稳压器或控制器电源电路开关式控制器光电二极管电脑输入元件
文件页数/大小: 28 页 / 299 K
品牌: MAXIM [ MAXIM INTEGRATED PRODUCTS ]
 浏览型号MAX1711EEG的Datasheet PDF文件第13页浏览型号MAX1711EEG的Datasheet PDF文件第14页浏览型号MAX1711EEG的Datasheet PDF文件第15页浏览型号MAX1711EEG的Datasheet PDF文件第16页浏览型号MAX1711EEG的Datasheet PDF文件第18页浏览型号MAX1711EEG的Datasheet PDF文件第19页浏览型号MAX1711EEG的Datasheet PDF文件第20页浏览型号MAX1711EEG的Datasheet PDF文件第21页  
Hig h -S p e e d , Dig it a lly Ad ju s t e d  
S t e p -Do w n Co n t ro lle rs fo r No t e b o o k CP Us  
0/MAX71  
+5V  
V
BATT  
APPROXIMATELY  
-0.65V  
MAX1710  
MAX1711  
5Ω  
BST  
DH  
SKIP  
1.5mA  
V
FORCE  
MAX1710  
MAX1711  
LX  
GND  
Figure 5. Reducing the Switching-Node Rise Time  
Figure 6. Disabling Over/Undervoltage Protection (Test Mode)  
ry design trade-off lies in choosing a good switching fre-  
quency and inductor operating point, and the following  
four factors dictate the rest of the design:  
es zero with every cycle at maximum load). Inductor  
values lower than this grant no further size-reduction  
benefit.  
1) Input voltage range. The ma ximum va lue  
The MAX1710/MAX1711s pulse-skipping algorithm  
initiates skip mode at the critical-conduction point. So,  
the inductor operating point also determines the load-  
current value at which PFM/PWM switchover occurs.  
The optimum point is usually found between 20% and  
50% ripple current.  
(V  
) must accommodate the worst-case high  
BATT(MAX)  
AC adapter voltage. The minimum value (V  
)
BATT(MIN)  
must account for the lowest battery voltage after  
drops due to connectors, fuses, and battery selector  
switches. If there is a choice at all, lower input volt-  
ages result in better efficiency.  
The ind uc tor rip p le c urre nt a ls o imp a c ts tra ns ie nt-  
2) Maximum load current. There are two values to con-  
response performance, especially at low V  
- V  
BATT  
OUT  
sider. The peak load current (I ) determines  
LOAD(MAX)  
differentials. Low inductor values allow the inductor cur-  
rent to slew faster, replenishing charge removed from the  
output filter capacitors by a sudden load step. The  
amount of output sag is also a function of the maximum  
duty factor, which can be calculated from the on-time  
and minimum off-time:  
the instantaneous component stresses and filtering  
re q uire me nts , a nd thus d rive s outp ut c a p a c itor  
selection, inductor saturation rating, and the design  
of the current-limit circuit. The continuous load cur-  
rent (I  
) determines the thermal stresses and  
LOAD  
thus d rive s the s e le c tion of inp ut c a p a c itors ,  
MOSFETs, and other critical heat-contributing com-  
ponents. Modern notebook CPUs generally exhibit  
2
(I  
)
L
LOAD(MAX)  
V
=
SAG  
2 C DUTY (V  
V  
)
F
BATT(MIN)  
OUT  
I
= I  
· 80%.  
LOAD  
LOAD(MAX)  
3) Switching frequency. This choice determines the  
basic trade-off between size and efficiency. The opti-  
mal frequency is largely a function of maximum input  
voltage, due to MOSFET switching losses that are  
In d u c t o r S e le c t io n  
The switching frequency (on-time) and operating point  
(% ripple or LIR) determine the inductor value as follows:  
V
OUT  
2
proportional to frequency and VBATT . The optimum  
L =  
f LIR I  
LOAD(MAX)  
fre q ue nc y is a ls o a moving ta rg e t, d ue to ra p id  
improvements in MOSFET technology that are making  
higher frequencies more practical (Table 4).  
Example: I  
= 7A, V  
ripple current or LIR = 0.5.  
= 2V, f = 300kHz, 50%  
LOAD(MAX)  
OUT  
4) Inductor operating point. This c hoic e p rovid e s  
trade-offs between size vs. efficiency. Low inductor  
values cause large ripple currents, resulting in the  
smallest size, but poor efficiency and high output  
noise. The minimum practical inductor value is one  
that causes the circuit to operate at the edge of criti-  
cal conduction (where the inductor current just touch-  
2V  
L =  
= 1.9µH (2µH)  
300kHz 0.5 7A  
Find a low-loss inductor having the lowest possible DC  
resistance that fits in the allotted dimensions. Ferrite  
cores are often the best choice, although powdered iron  
______________________________________________________________________________________ 17