欢迎访问ic37.com |
会员登录 免费注册
发布采购

MAX1636EAP 参数 Datasheet PDF下载

MAX1636EAP图片预览
型号: MAX1636EAP
PDF下载: 下载PDF文件 查看货源
内容描述: 低电压,高精度降压型控制器,用于便携式CPU电源 [Low-Voltage, Precision Step-Down Controller for Portable CPU Power]
分类和应用: 控制器便携式
文件页数/大小: 24 页 / 220 K
品牌: MAXIM [ MAXIM INTEGRATED PRODUCTS ]
 浏览型号MAX1636EAP的Datasheet PDF文件第14页浏览型号MAX1636EAP的Datasheet PDF文件第15页浏览型号MAX1636EAP的Datasheet PDF文件第16页浏览型号MAX1636EAP的Datasheet PDF文件第17页浏览型号MAX1636EAP的Datasheet PDF文件第19页浏览型号MAX1636EAP的Datasheet PDF文件第20页浏览型号MAX1636EAP的Datasheet PDF文件第21页浏览型号MAX1636EAP的Datasheet PDF文件第22页  
Lo w -Vo lt a g e , P re c is io n S t e p -Do w n  
Co n t ro lle r fo r P o rt a b le CP U P o w e r  
L = V  
(V  
- V  
) / (V  
x f x I  
x LIR)  
OUT IN(MAX)  
OUT  
IN(MIN)  
OUT  
__________________De s ig n P ro c e d u re  
The five p re d e s ig ne d s ta nd a rd a p p lic a tion c irc uits  
(Figure 1 and Table 1) contain ready-to-use solutions  
for c ommon a p p lic a tion ne e d s . Us e the following  
design procedure to optimize these basic schematics  
for different voltage or current requirements. But before  
beginning a design, firmly establish the following:  
where f = switching frequency, normally 200kHz or  
300kHz, and I = maximum DC load current. The  
peak current can be calculated by:  
OUT  
I
= I  
+ [V  
(V  
- V  
) / (2 x f x L x V  
)]  
PEAK  
LOAD  
OUT IN(MAX)  
OUT  
IN(MAX)  
The inductor's DC resistance should be low enough  
that R x I < 100mV, as it is a key parameter for  
DC  
PEAK  
• Ma ximum inp ut (b a tte ry) volta g e , V  
. This  
IN(MAX)  
1
e ffic ie nc y p e rforma nc e . If a s ta nd a rd , off-the -s he lf  
value should include the worst-case conditions, such  
as no-load operation when a battery charger or AC  
adapter is connected but no battery is installed.  
2
inductor is not available, choose a core with an LI rat-  
2
ing greater than L x I  
and wind it with the largest  
PEAK  
diameter wire that fits the winding area. For 300kHz  
applications, ferrite-core material is strongly preferred;  
for 200kHz applications, Kool-Mu® (aluminum alloy) or  
even powdered iron is acceptable. If light-load efficien-  
c y is unimp orta nt (in d e s ktop PC a p p lic a tions , for  
example), then low-permeability iron-powder cores may  
be acceptable, even at 300kHz. For high-current appli-  
cations, shielded-core geometries, such as toroidal or  
pot core, help keep noise, EMI, and switching-wave-  
form jitter low.  
V
must not exceed 30V.  
IN(MAX)  
• Minimum input (battery) voltage, V  
. This should  
IN(MIN)  
be taken at full load under the lowest battery condi-  
tions. If V is less than 4.5V, use an external cir-  
IN(MIN)  
cuit to externally hold VL above the VL undervoltage  
lockout threshold. If the minimum input-output differ-  
ence is less than 1.5V, the filter capacitance required  
to maintain good AC load regulation increases (see  
Low-Voltage Operation section).  
In d u c t o r Va lu e  
The exact inductor value is not critical and can be  
freely adjusted to make trade-offs between size, cost,  
and efficiency. Lower inductor values minimize size  
and cost but reduce efficiency due to higher peak-cur-  
rent levels. The smallest inductor is achieved by lower-  
ing the ind uc ta nc e until the c irc uit op e ra te s a t the  
border between continuous and discontinuous mode.  
Furthe r re d uc ing the ind uc tor va lue b e low this  
crossover point results in discontinuous-conduction  
operation even at full load. This helps lower output filter  
capacitance requirements, but efficiency suffers due to  
Cu rre n t -S e n s e Re s is t o r Va lu e  
The current-sense resistor value is calculated accord-  
ing to the worst-case, low-current-limit threshold volt-  
age (from the Electrical Characteristics table) and the  
peak inductor current:  
R
= 80mV / I  
PEAK  
SENSE  
Use I  
from the second equation in the Inductor  
PEAK  
Value section. Use the calculated value of R  
to  
SENSE  
size the MOSFET switches and specify inductor satura-  
tion-current ratings according to the worst-case high-  
current-limit threshold voltage:  
2
high I R losses. On the other hand, higher inductor val-  
I
= 120mV / R  
SENSE  
PEAK  
ues mean greater efficiency, but resistive losses due to  
extra wire turns eventually exceed the benefit gained  
from lower peak-current levels. Also, high inductor val-  
Low-inductance resistors, such as surface-mount metal  
film, are recommended.  
ues can affect load-transient response (see the V  
SAG  
equation in the Low-Voltage Operation section). The  
equations in this section are for continuous-conduction  
operation.  
In p u t Ca p a c it o r Va lu e  
Connect low-ESR bulk capacitors directly to the drain  
on the high-side MOSFET. The bulk input filter capaci-  
tor is usually selected according to input ripple current  
requirements and voltage rating, rather than capacitor  
value. Electrolytic capacitors with low enough equiva-  
lent series resistance (ESR) to meet the ripple-current  
requirement invariably have sufficient capacitance val-  
ues. Aluminum electrolytic capacitors, such as Sanyo  
OS-CON or Nic hic on PL, a re s up e rior to ta nta lum  
types, which risk power-up surge-current failure, espe-  
cially when connecting to robust AC adapters or low-  
Thre e ke y ind uc tor p a ra me te rs mus t b e s p e c ifie d :  
inductance value (L), peak current (I ), and DC  
PEAK  
resistance (R ). The following equation includes a  
DC  
constant, LIR, which is the ratio of inductor peak-to-  
peak AC current to DC load current. A higher LIR value  
allows smaller inductance but results in higher losses  
and higher ripple. A good compromise between size  
and losses is a 30% ripple-current to load-current ratio  
(LIR = 0.3), which corresponds to a peak inductor cur-  
rent 1.15 times higher than the DC load current.  
impedance batteries. RMS input ripple current (I  
) is  
RMS  
Kool-Mu is a registered trademark of Magnetics, Inc.  
18 ______________________________________________________________________________________  
 复制成功!