欢迎访问ic37.com |
会员登录 免费注册
发布采购

MAX1636EAP 参数 Datasheet PDF下载

MAX1636EAP图片预览
型号: MAX1636EAP
PDF下载: 下载PDF文件 查看货源
内容描述: 低电压,高精度降压型控制器,用于便携式CPU电源 [Low-Voltage, Precision Step-Down Controller for Portable CPU Power]
分类和应用: 控制器便携式
文件页数/大小: 24 页 / 220 K
品牌: MAXIM [ MAXIM INTEGRATED PRODUCTS ]
 浏览型号MAX1636EAP的Datasheet PDF文件第16页浏览型号MAX1636EAP的Datasheet PDF文件第17页浏览型号MAX1636EAP的Datasheet PDF文件第18页浏览型号MAX1636EAP的Datasheet PDF文件第19页浏览型号MAX1636EAP的Datasheet PDF文件第21页浏览型号MAX1636EAP的Datasheet PDF文件第22页浏览型号MAX1636EAP的Datasheet PDF文件第23页浏览型号MAX1636EAP的Datasheet PDF文件第24页  
Lo w -Vo lt a g e , P re c is io n S t e p -Do w n  
Co n t ro lle r fo r P o rt a b le CP U P o w e r  
that both MOSFETs are within their maximum junction  
Lo w -Vo lt a g e Op e ra t io n  
Low input voltages and low input-output differential  
voltages each require extra care in their design. Low  
absolute input voltages can cause the VL linear regula-  
tor to enter dropout and eventually shut itself off. Low  
temperature at high ambient temperature. The worst-  
case dissipation for the high-side MOSFET occurs at  
both extremes of input voltage, and the worst-case dis-  
sipation for the low-side MOSFET occurs at maximum  
input voltage.  
V
- V  
differentials can cause the output voltage to  
IN  
OUT  
sag when the load current changes abruptly. The sags  
amplitude is a function of inductor value and maximum  
Duty = (V  
+ V ) / (V - V  
)
OUT  
Q2  
IN  
Q1  
d uty fa c tor (D  
, a n Ele c tric a l Cha ra c te ris tic s  
MAX  
MAX136  
parameter, 98% guaranteed over temperature at f =  
200kHz) as follows:  
2
PD (upper FET) = I  
x R  
x Duty + V  
IN  
x
LOAD  
DS(ON)  
I
x f x [(V x C  
) / I  
+ 20ns]  
LOAD  
IN  
RSS  
GATE  
2
(I  
)
x L  
x D  
STEP  
V
=
SAG  
2 x C × (V  
V  
)
F
IN(MIN)  
MAX  
OUT  
2
PD (lower FET) = I  
x R  
x (1 - Duty)  
LOAD  
DS(ON)  
where on-state voltage drop V = I  
x R  
,
=
Table 6 is a low-voltage troubleshooting guide. The  
c ure for low-volta g e s a g is to inc re a s e the outp ut  
Q
LOAD  
DS(ON)  
GATE  
C
= MOSFET reverse transfer capacitance, I  
RSS  
DH driver peak output current capability (1A typ), and  
20ns = DH driver inherent rise/fall time. The MAX1636s  
output undervoltage shutdown protects the synchro-  
nous rectifier under output short-circuit conditions. To  
reduce EMI, add a 0.1µF ceramic capacitor from the  
high-side switch drain to the low-side switch source.  
capacitors value. For example, at V = +5.5V, V  
=
IN  
OUT  
5V, L = 10µH, f = 200kHz, and I  
= 3A, a total  
STEP  
capacitance of 660µF keeps the sag less than 200mV.  
Note that only the capacitance requirement increases;  
the ESR requirements do not change. Therefore, the  
added capacitance can be supplied by a low-cost bulk  
capacitor in parallel with the normal low-ESR capacitor.  
Rectifier Clamp Diode  
The rectifier is a clamp across the low-side MOSFET  
that catches the negative inductor swing during the  
60ns dead time between turning one MOSFET off and  
each low-side MOSFET on. The latest generations of  
MOSFETs inc orp ora te a hig h-s p e e d s ilic on b od y  
diode, which serves as an adequate clamp diode if  
efficiency is not of primary importance. A Schottky  
diode can be placed in parallel with the body diode to  
reduce the forward voltage drop, typically improving  
efficiency 1% to 2%. Use a diode with a DC current rat-  
ing equal to one-third of the load current; for example,  
use an MBR0530 (500mA-rated) type for loads up to  
1.5A, a 1N5819 type for loads up to 3A, or a 1N5822  
type for loads up to 10A. The rectifiers rated reverse-  
breakdown voltage must be at least equal to the maxi-  
mum input voltage, preferably with a 20% derating  
factor.  
__________Ap p lic a t io n s In fo rm a t io n  
He a vy-Lo a d Effic ie n c y Co n s id e ra t io n s  
The major efficiency-loss mechanisms under loads are  
as follows, in the usual order of importance:  
2
2
• P(I R) = I R losses  
• P(tran) = transition losses  
• P(gate) = gate-charge losses  
• P(diode) = diode-conduction losses  
• P(cap) = capacitor ESR losses  
P(IC) = los s e s d ue to the ICs op e ra ting s up p ly  
current  
Ind uc tor c ore los s e s a re fa irly low a t he a vy loa d s  
because the inductors AC current component is small.  
Therefore, they are not accounted for in this analysis.  
Ferrite cores are preferred, especially at 300kHz, but  
powdered cores, such as Kool-Mu, can also work well.  
Boost-Supply Diode  
A signal diode such as a 1N4148 works well in most  
applications. If the input voltage can go below +6V,  
us e a s ma ll (20mA) Sc hottky d iod e for s lig htly  
improved efficiency and dropout characteristics. Do  
not us e la rg e p owe r d iod e s , s uc h a s 1N5817 or  
1N4001, since high junction capacitance can pump up  
VL to excessive voltages.  
Efficiency = P  
= P  
/ P x 100%  
IN  
OUT  
OUT  
/ (P  
+ P  
) x 100%  
TOTAL  
OUT  
2
P
= P(I R) + P(tran) + P(gate) + P(diode)  
+ P(cap) + P(IC)  
TOTAL  
2
2
P = (I R) = (I  
) x (R  
+ R  
+R  
)
LOAD  
DC  
DS(ON)  
SENSE  
20 ______________________________________________________________________________________  
 复制成功!