欢迎访问ic37.com |
会员登录 免费注册
发布采购

CS51312GDR16 参数 Datasheet PDF下载

CS51312GDR16图片预览
型号: CS51312GDR16
PDF下载: 下载PDF文件 查看货源
内容描述: CPU同步降压控制器12V只有应用 [Synchronous CPU Buck Controller for 12V Only Applications]
分类和应用: 稳压器开关式稳压器或控制器电源电路开关式控制器光电二极管
文件页数/大小: 18 页 / 277 K
品牌: CHERRY [ CHERRY SEMICONDUCTOR CORPORATION ]
 浏览型号CS51312GDR16的Datasheet PDF文件第10页浏览型号CS51312GDR16的Datasheet PDF文件第11页浏览型号CS51312GDR16的Datasheet PDF文件第12页浏览型号CS51312GDR16的Datasheet PDF文件第13页浏览型号CS51312GDR16的Datasheet PDF文件第15页浏览型号CS51312GDR16的Datasheet PDF文件第16页浏览型号CS51312GDR16的Datasheet PDF文件第17页浏览型号CS51312GDR16的Datasheet PDF文件第18页  
Application Information: continued  
Voltage applied to the FET gates depends on the applica-  
PSWH(ON) = upper MOSFET switch-on losses;  
PSWH(OFF) = upper MOSFET switch-off losses.  
Once the total power dissipation in the switching FET is  
known, the maximum FET switch junction temperature  
can be calculated:  
tion circuit used. Both upper and lower gate driver outputs  
are specified to drive to within 1.5V of ground when in the  
low state and to within 2V of their respective bias supplies  
when in the high state. In practice, the FET gates will be  
driven rail-to-rail due to overshoot caused by the capaci-  
tive load they present to the controller IC.  
TJ = TA + [PHFET(TOTAL) × RθJA],  
Step 7a - Selection of the switching (upper) FET  
where  
TJ = FET junction temperature;  
TA = ambient temperature;  
PHFET(TOTAL) = total switching (upper) FET losses;  
The designer must ensure that the total power dissipation  
in the FET switch does not cause the power component’s  
junction temperature to exceed 150°C.  
RθJA = upper FET junction-to-ambient thermal resistance  
The maximum RMS current through the switch can be  
determined by the following formula:  
Step 7b: Selection of the synchronous (lower) FET  
The switch conduction losses for the lower FET can be cal-  
culated as follows:  
IRMS(H)  
=
(IL(PEAK)2 + (IL(PEAK) × IL(VALLEY)) + IL(VALLEY)2 × D  
,
PRMSL = IRMS2 × RDS(ON) = [IOUT  
× ,  
(1 D)]2 × RDS(ON)  
3
where  
where  
PRMSL = lower MOSFET conduction losses;  
IOUT = load current;  
IRMS(H) = maximum switching MOSFET RMS current;  
IL(PEAK) = inductor peak current;  
IL(VALLEY) = inductor valley current;  
D = Duty Cycle.  
D = Duty Cycle;  
RDS(ON) = lower FET drain-to-source on-resistance.  
The synchronous MOSFET has no switching losses, except  
for losses in the internal body diode, because it turns on  
into near zero voltage conditions. The MOSFET body  
diode will conduct during the non-overlap time and the  
resulting power dissipation (neglecting reverse recovery  
losses) can be calculated as follows:  
Once the RMS current through the switch is known, the  
switching MOSFET conduction losses can be calculated:  
PRMS(H) = IRMS(H)2 × RDS(ON)  
where  
PRMS(H) = switching MOSFET conduction losses;  
IRMS(H) = maximum switching MOSFET RMS current;  
RDS(ON) = FET drain-to-source on-resistance  
The upper MOSFET switching losses are caused during  
MOSFET switch-on and switch-off and can be determined  
by using the following formula:  
PSWL = VSD × ILOAD × non-overlap time × FSW  
,
where  
PSWL = lower FET switching losses;  
VSD = lower FET source-to-drain voltage;  
ILOAD = load current  
Non-overlap time = GATE(L)-to-GATE(H) or GATE(H)-  
to-GATE(L) delay (from CS51312 data sheet Electrical  
Characteristics section);  
PSWH = PSWH(ON) + PSWH(OFF)  
VIN × IOUT × (tRISE + tFALL)  
FSW = switching frequency.  
=
,
The total power dissipation in the synchronous (lower)  
MOSFET can then be calculated as:  
6T  
where  
PLFET(TOTAL) = PRMSL + PSWL  
,
PSWH(ON) = upper MOSFET switch-on losses;  
PSWH(OFF) = upper MOSFET switch-off losses;  
VIN = input voltage;  
where  
PLFET(TOTAL) = Synchronous (lower) FET total losses;  
PRMSL = Switch Conduction Losses;  
PSWL = Switching losses.  
Once the total power dissipation in the synchronous FET is  
known the maximum FET switch junction temperature can  
be calculated:  
IOUT = load current;  
tRISE = MOSFET rise time (from FET manufacturer’s  
switching characteristics performance curve);  
tFALL = MOSFET fall time (from FET manufacturer’s  
switching characteristics performance curve);  
T = 1/FSW = period.  
The total power dissipation in the switching MOSFET can  
then be calculated as:  
TJ = TA + [PLFET(TOTAL) × RθJA],  
where  
PHFET(TOTAL) = PRMSH + PSWH(ON) + PSWH(OFF)  
,
TJ = MOSFET junction temperature;  
TA = ambient temperature;  
where  
PLFET(TOTAL) = total synchronous (lower) FET losses;  
PHFET(TOTAL) = total switching (upper) MOSFET losses;  
PRMSH = upper MOSFET switch conduction Losses;  
R
θJA = lower FET junction-to-ambient thermal resistance.  
14  
 复制成功!