欢迎访问ic37.com |
会员登录 免费注册
发布采购

UCD9090 参数 Datasheet PDF下载

UCD9090图片预览
型号: UCD9090
PDF下载: 下载PDF文件 查看货源
内容描述: 10轨电源排序器和监控ACPI支持 [10-Rail Power Supply Sequencer and Monitor with ACPI Support]
分类和应用: 监控
文件页数/大小: 48 页 / 1348 K
品牌: TI [ TEXAS INSTRUMENTS ]
 浏览型号UCD9090的Datasheet PDF文件第1页浏览型号UCD9090的Datasheet PDF文件第2页浏览型号UCD9090的Datasheet PDF文件第4页浏览型号UCD9090的Datasheet PDF文件第5页浏览型号UCD9090的Datasheet PDF文件第6页浏览型号UCD9090的Datasheet PDF文件第7页浏览型号UCD9090的Datasheet PDF文件第8页浏览型号UCD9090的Datasheet PDF文件第9页  
UCD9090  
www.ti.com  
SLVSA30A APRIL 2011REVISED AUGUST 2011  
THERMAL INFORMATION  
UCD9090  
THERMAL METRIC(1)  
RGZ  
48 PINS  
25  
UNITS  
θJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance(3)  
Junction-to-board thermal resistance(4)  
Junction-to-top characterization parameter(5)  
Junction-to-board characterization parameter(6)  
Junction-to-case (bottom) thermal resistance(7)  
θJCtop  
θJB  
8.9  
5.5  
°C/W  
ψJT  
0.3  
ψJB  
1.5  
θJCbot  
1.7  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific  
JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA , using a procedure described in JESD51-2a (sections 6 and 7).  
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
RECOMMENDED OPERATING CONDITIONS  
MIN  
3
NOM  
MAX  
3.6  
UNIT  
V
Supply voltage during operation (V33D, V33DIO, V33A  
Operating free-air temperature range, TA  
Junction temperature, TJ  
)
3.3  
40  
110  
125  
°C  
°C  
ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
SUPPLY CURRENT  
IV33A  
VV33A = 3.3 V  
VV33DIO = 3.3 V  
VV33D = 3.3 V  
8
2
mA  
mA  
mA  
IV33DIO  
Supply current(1)  
IV33D  
IV33D  
ANALOG INPUTS (MON1MON13)  
40  
VV33D = 3.3 V, storing configuration parameters in  
flash memory  
50  
mA  
VMON  
Input voltage range  
MON1MON10  
0
0.2  
4  
-2  
2.5  
2.5  
4
V
V
MON11  
INL  
ADC integral nonlinearity  
ADC differential nonlinearity  
Input leakage current  
Input offset current  
LSB  
LSB  
nA  
DNL  
Ilkg  
2
3 V applied to pin  
100  
5
IOFFSET  
1-ksource impedance  
MON1MON10, ground reference  
MON11, ground reference  
5  
8
μA  
MΩ  
MΩ  
pF  
RIN  
Input impedance  
0.5  
1.5  
3
CIN  
Input capacitance  
10  
tCONVERT  
ADC sample period  
12 voltages sampled, 3.89 μsec/sample  
0°C to 125°C  
400  
μsec  
%
ADC 2.5 V, internal reference accuracy  
0.5  
1  
0.5  
1
VREF  
40°C to 125°C  
%
ANALOG INPUT (PMBUS_ADDRx)  
IBIAS Bias current for PMBus Addr pins  
9
11  
μA  
(1) Typical supply current values are based on device programmed but not configured, and no peripherals connected to any pins.  
Copyright © 2011, Texas Instruments Incorporated  
3
 复制成功!