欢迎访问ic37.com |
会员登录 免费注册
发布采购

LM26420XMH/NOPB 参数 Datasheet PDF下载

LM26420XMH/NOPB图片预览
型号: LM26420XMH/NOPB
PDF下载: 下载PDF文件 查看货源
内容描述: [双路 2A 高效同步直流/直流转换器 | PWP | 20 | -40 to 125]
分类和应用: 信息通信管理开关光电二极管转换器
文件页数/大小: 44 页 / 1515 K
品牌: TI [ TEXAS INSTRUMENTS ]
 浏览型号LM26420XMH/NOPB的Datasheet PDF文件第18页浏览型号LM26420XMH/NOPB的Datasheet PDF文件第19页浏览型号LM26420XMH/NOPB的Datasheet PDF文件第20页浏览型号LM26420XMH/NOPB的Datasheet PDF文件第21页浏览型号LM26420XMH/NOPB的Datasheet PDF文件第23页浏览型号LM26420XMH/NOPB的Datasheet PDF文件第24页浏览型号LM26420XMH/NOPB的Datasheet PDF文件第25页浏览型号LM26420XMH/NOPB的Datasheet PDF文件第26页  
LM26420, LM26420-Q0, LM26420-Q1  
SNVS579J FEBRUARY 2009REVISED SEPTEMBER 2015  
www.ti.com  
Iav= I1 × D1 + I2 × D2. To quickly determine the values of d1, d2 and d3, refer to the decision tree in Figure 44. To  
determine the duty cycle of each channel, use D = VOUT/VIN for a quick result or use the following equation for a  
more accurate result.  
VOUT + VSW_BOT + IOUT x RDC  
D =  
VIN + VSW_BOT - VSW_TOP  
where  
RDC is the winding resistance of the inductor.  
(15)  
Example:  
VIN = 5 V, VOUT1 = 3.3 V, IOUT1 = 2 A, VOUT2 = 1.2 V, IOUT2 = 1.5 A, RDS = 170 mΩ, RDC = 30 mΩ. (IOUT1 is the  
same as I1 in the input ripple RMS current equation, IOUT2 is the same as I2).  
First, find out the duty cycles. Plug the numbers into the duty cycle equation and we get D1 = 0.75, and D2 =  
0.33. Next, follow the decision tree in Figure 44 to find out the values of d1, d2 and d3. In this case, d1 = 0.5, d2  
= D2 + 0.5 – D1 = 0.08, and d3 = D1 – 0.5 = 0.25. Iav = IOUT1 × D1 + IOUT2 x D2 = 1.995 A. Plug all the numbers  
into the input ripple RMS current equation and the result is IIR(rms) = 0.77 A.  
Figure 44. Determining D1, D2, And D3  
8.2.1.2.3 Output Capacitor  
The output capacitor is selected based upon the desired output ripple and transient response. The initial current  
of a load transient is provided mainly by the output capacitor. The output ripple of the converter is approximately:  
1
RESR  
+
'VOUT = 'IL  
8 x FSW x COUT  
(16)  
When using MLCCs, the ESR is typically so low that the capacitive ripple may dominate. When this occurs, the  
output ripple will be approximately sinusoidal and 90° phase shifted from the switching action. Given the  
availability and quality of MLCCs and the expected output voltage of designs using the LM26420, there is really  
no need to review any other capacitor technologies. Another benefit of ceramic capacitors is their ability to  
bypass high frequency noise. A certain amount of switching edge noise will couple through parasitic  
capacitances in the inductor to the output. A ceramic capacitor will bypass this noise while a tantalum will not.  
Since the output capacitor is one of the two external components that control the stability of the regulator control  
loop, most applications will require a minimum of 22 µF of output capacitance. Capacitance often, but not always,  
can be increased significantly with little detriment to the regulator stability. Like the input capacitor, recommended  
multilayer ceramic capacitors are X7R or X5R types.  
8.2.1.2.4 Calculating Efficiency, and Junction Temperature  
The complete LM26420 DC-DC converter efficiency can be estimated in the following manner.  
22  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM26420 LM26420-Q0 LM26420-Q1  
 
 复制成功!