欢迎访问ic37.com |
会员登录 免费注册
发布采购

SCC2698BC1A84 参数 Datasheet PDF下载

SCC2698BC1A84图片预览
型号: SCC2698BC1A84
PDF下载: 下载PDF文件 查看货源
内容描述: 增强的八进制通用异步接收器/发送器UART八路 [Enhanced octal universal asynchronous receiver/transmitter Octal UART]
分类和应用: 外围集成电路
文件页数/大小: 29 页 / 170 K
品牌: NXP [ NXP ]
 浏览型号SCC2698BC1A84的Datasheet PDF文件第2页浏览型号SCC2698BC1A84的Datasheet PDF文件第3页浏览型号SCC2698BC1A84的Datasheet PDF文件第4页浏览型号SCC2698BC1A84的Datasheet PDF文件第5页浏览型号SCC2698BC1A84的Datasheet PDF文件第7页浏览型号SCC2698BC1A84的Datasheet PDF文件第8页浏览型号SCC2698BC1A84的Datasheet PDF文件第9页浏览型号SCC2698BC1A84的Datasheet PDF文件第10页  
Philips Semiconductors  
Product specification  
Enhanced octal universal asynchronous  
receiver/transmitter (Octal UART)  
SCC2698B  
PIN DESCRIPTION (Continued)  
PIN  
NO.  
MNEMONIC  
TYPE  
NAME AND FUNCTION  
MPI1a–MPI1h  
14, 21,  
38, 40,  
60, 62,  
78, 80  
I
Multi-Purpose Input 1: This pin (one for each UART) is programmable. Its state can always be  
determined by reading the IPCR bit 1 or IPR bit 1.  
C/TCLK – This input will serve as the external clock for the counter/timer when ACR[5] is set to 0.  
This occurs only for channels a, c, e, and g since there is one counter/timer for each DUART block.  
This pin is provided with a change-of-state detector.  
MPP1a–MPP1h 24, 26,  
I/O  
I/O  
I
Multi-Purpose Pin 1: This pin (one for each UART) is programmed to be an input or an output  
according to the state of OPCR[7]. (0 = input, 1 = output). The state of the multi-purpose pin can  
always be determined by reading the IPR. When programmed as an input, it will be the transmitter  
clock (TxCLK). It will be 1x or 16x according to the clock select registers (CSR[3.0]). When  
programmed as an output, it will be the status register TxRDY bit. These pins have a small pull-up  
device.  
42, 44,  
64, 66,  
82, 84  
MPP2a–MPP2h 28, 30,  
Multi-Purpose Pin 2: This pin (one for each UART) is programmed to be an input or an output  
according to the state of OPCR[7]. (0 = input, 1 = output). The state of the multi-purpose pin can  
always be determined by reading the IPR. When programmed as an input, it will be the receiver clock  
(RxCLK). It will be 1x or 16x according to the clock select registers (CSR[7:4). When programmed as  
an output, it will be the ISR status register RxRDY/FIFO full bit. These pins have a small pull-up  
device.  
48, 50,  
68, 70,  
2, 4  
Test Input  
Test Input: This pin is used as an input for test purposes at the factory while in test mode. This pin  
can be treated as ‘N/C’ by the user. It can be tied high, or left open.  
V
5, 45  
I
I
Power Supply: +5V supply input.  
CC  
GND  
20, 65  
Ground  
Associated with the interrupt system are the interrupt mask register  
BLOCK DIAGRAM  
(IMR) and the interrupt status register (ISR). The IMR can be  
programmed to select only certain conditions, of the above, to cause  
INTRN to be asserted. The ISR can be read by the CPU to  
determine all currently active interrupting conditions. However, the  
bits of the ISR are not masked by the IMR. The transmitter ready  
status and the receiver ready or FIFO full status can be provided on  
MPP1a, MPP1b, MPP2a, and MPP2b by setting OPCR[7]. these  
outputs are not masked by IMR.  
As shown in the block diagram, the Octal UART consists of: data  
bus buffer, interrupt control, operation control, timing, and eight  
receiver and transmitter channels. The eight channels are divided  
into four different blocks, each block independent of each other (see  
Figure 3). Figure 2 represents the DUART block.  
BLOCK A  
BLOCK C  
CHANNELS e, f  
CHANNELS a, b  
Operation Control  
BLOCK B  
CHANNELS c, d  
BLOCK D  
CHANNELS g, h  
The operation control logic receives operation commands from the  
CPU and generates appropriate signals to internal sections to  
control device operation. It contains address decoding and read and  
write circuits to permit communications with the microprocessor via  
the data bus buffer. The functions performed by the CPU read and  
write operations are shown in Table 1.  
SD00186  
Figure 3. Channel Architecture  
Channel Blocks  
There are four blocks (Figure 3), each containing two sets of  
receiver/transmitters. In the following discussion, the description  
applies to Block A which contains channels a and b. However, the  
same information applies to all channel blocks.  
Mode registers 1 and 2 are accessed via an auxiliary pointer. The  
pointer is set to MR1 by RESET or by issuing a reset pointer  
command via the command register. Any read or write of the mode  
register while the pointer is at MR1 switches the pointer to MR2 after  
the read or write. The pointer then remains at MR2 so that  
subsequent accesses are to MR2. To access MR1, the command  
0001 of the command register must be executed.  
Data Bus Buffer  
The data bus buffer provides the interface between the external and  
internal data buses. It is controlled by the operation control block to  
allow read and write operations to take place between the controlling  
CPU and the Octal UART.  
Timing Circuits  
The timing block consists of a crystal oscillator, a baud rate  
generator, a programmable 16-bit counter/timer for each block, and  
two clock selectors.  
Interrupt Control  
A single interrupt output per DUART (INTRN) is provided which is  
asserted on occurrence of any of the following internal events:  
–Transmit holding register ready for each channel  
Crystal Clock  
The crystal oscillator operates directly from a 3.6864MHz crystal  
connected across the X1/ CLK and X2 inputs with a minimum of  
external components. If an external clock of the appropriate  
frequency is available, it may be connected to X1/CLK. If an external  
–Receive holding register ready or FIFO full for each channel  
–Change in break received status for each channel  
–Counter reached terminal count  
–Change in MPI input  
6
2000 Jan 31  
 复制成功!