欢迎访问ic37.com |
会员登录 免费注册
发布采购

MCP6143-I/P 参数 Datasheet PDF下载

MCP6143-I/P图片预览
型号: MCP6143-I/P
PDF下载: 下载PDF文件 查看货源
内容描述: 600 nA的,非单位增益,轨到轨输入/输出运算放大器 [600 nA, Non-Unity Gain Rail-to-Rail Input/Output Op Amps]
分类和应用: 运算放大器放大器电路光电二极管
文件页数/大小: 34 页 / 638 K
品牌: MICROCHIP [ MICROCHIP ]
 浏览型号MCP6143-I/P的Datasheet PDF文件第9页浏览型号MCP6143-I/P的Datasheet PDF文件第10页浏览型号MCP6143-I/P的Datasheet PDF文件第11页浏览型号MCP6143-I/P的Datasheet PDF文件第12页浏览型号MCP6143-I/P的Datasheet PDF文件第14页浏览型号MCP6143-I/P的Datasheet PDF文件第15页浏览型号MCP6143-I/P的Datasheet PDF文件第16页浏览型号MCP6143-I/P的Datasheet PDF文件第17页  
MCP6141/2/3/4  
EQUATION 4-2:  
GN = 1 +  
4.4.2  
CAPACITIVE LOADS  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. A unity gain buffer (G = +1) is the most  
sensitive to capacitive loads, though all gains show the  
same general behavior.  
RF  
------  
RG  
10 V/V  
In order for the amplifiers to be stable, the noise gain  
should meet the specified minimum noise gain. Note  
that a noise gain of GN = +10 V/V corresponds to a  
non-inverting signal gain of G = +10 V/V, or to an  
inverting signal gain of G = -9 V/V.  
When driving large capacitive loads with these op  
amps (e.g., > 60 pF when G = +10), a small series  
resistor at the output (RISO in Figure 4-5) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The band-  
width will be generally lower than the bandwidth with no  
capacitive load.  
RIN  
VIN  
VOUT  
MCP614X  
RG  
RF  
RG  
RF  
VA  
FIGURE 4-2:  
Noise Gain for Non-inverting  
Gain Configuration.  
RISO  
CL  
VOUT  
MCP614X  
RG  
RF  
VB  
VIN  
VOUT  
FIGURE 4-5:  
Output Resistor, RISO  
MCP614X  
RIN  
stabilizes large capacitive loads.  
Figure 4-6 gives recommended RISO values for differ-  
ent capacitive loads and gains. The x-axis is the nor-  
malized load capacitance (CL/GN), where GN is the  
circuit’s noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1+|Signal Gain| (e.g., -9 V/V gives GN = +10 V/V).  
FIGURE 4-3:  
Gain Configuration.  
Noise Gain for Inverting  
Figure 4-4 shows a unity gain buffer and Miller integra-  
tor that are unstable when used with the  
MCP6141/2/3/4 family. Note that the capacitor makes  
the integrator circuit reach unity gain at high  
frequencies, which makes these op amps unstable.  
1001,000k  
Unity Gain Buffer  
10k  
10,0 0  
GN = +10  
GN = +20  
GN t+50  
VOUT  
MCP614X  
VIN  
1k  
1,000  
1p  
10p  
1.E+01  
Normalized Load Capacitance; CL/GN (F)  
100p  
1n  
1.E+03  
1.E+00  
1.E+02  
Miller Integrator  
R
C
FIGURE 4-6:  
Recommended RISO Values  
VOUT  
VIN  
for Capacitive Loads.  
MCP614X  
After selecting RISO for your circuit, double check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO’s value until the  
response is reasonable. Bench evaluation and simula-  
tions with the MCP6141/2/3/4 SPICE macro model are  
helpful.  
FIGURE 4-4:  
Typical Unstable Circuits for  
the MCP6141/2/3/4 Family.  
© 2005 Microchip Technology Inc.  
DS21668B-page 13  
 复制成功!