The Multi-processor Communication mode enables several slave MCUs to receive data
from a master MCU. This is done by first decoding an address frame to find out which
MCU has been addressed. If a particular slave MCU has been addressed, it will receive
the following data frames as normal, while the other slave MCUs will ignore the received
frames until another address frame is received.
Using MPCMn
For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZn
= 7). The ninth bit (TXB8n) must be set when an address frame (TXB8n = 1) or cleared
when a data frame (TXB = 0) is being transmitted. The slave MCUs must in this case be
set to use a 9-bit character frame format.
The following procedure should be used to exchange data in Multi-processor Communi-
cation mode:
1. All Slave MCUs are in Multi-processor Communication mode (MPCMn in UCS-
RnA is set).
2. The Master MCU sends an address frame, and all slaves receive and read this
frame. In the Slave MCUs, the RXCn Flag in UCSRnA will be set as normal.
3. Each Slave MCU reads the UDRn Register and determines if it has been
selected. If so, it clears the MPCMn bit in UCSRnA, otherwise it waits for the next
address byte and keeps the MPCMn setting.
4. The addressed MCU will receive all data frames until a new address frame is
received. The other Slave MCUs, which still have the MPCMn bit set, will ignore
the data frames.
5. When the last data frame is received by the addressed MCU, the addressed
MCU sets the MPCMn bit and waits for a new address frame from master. The
process then repeats from 2.
Using any of the 5- to 8-bit character frame formats is possible, but impractical since the
Receiver must change between using n and n+1 character frame formats. This makes
full-duplex operation difficult since the Transmitter and Receiver uses the same charac-
ter size setting. If 5- to 8-bit character frames are used, the Transmitter must be set to
use two stop bit (USBSn = 1) since the first stop bit is used for indicating the frame type.
Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCMn bit.
The MPCMn bit shares the same I/O location as the TXCn Flag and this might acciden-
tally be cleared when using SBI or CBI instructions.
USART Register
Description
USART I/O Data Register n–
UDRn
Bit
7
6
5
4
3
2
1
0
RXB[7:0]
TXB[7:0]
UDRn (Read)
UDRn (Write)
Read/Write
Initial Value
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers
share the same I/O address referred to as USART Data Register or UDRn. The Trans-
mit Data Buffer Register (TXB) will be the destination for data written to the UDRn
Register location. Reading the UDRn Register location will return the contents of the
Receive Data Buffer Register (RXB).
For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter
and set to zero by the Receiver.
222
ATmega640/1280/1281/2560/2561
2549A–AVR–03/05