欢迎访问ic37.com |
会员登录 免费注册
发布采购

ATMEGA2560 参数 Datasheet PDF下载

ATMEGA2560图片预览
型号: ATMEGA2560
PDF下载: 下载PDF文件 查看货源
内容描述: 8位微控制器与256K字节的系统内可编程闪存 [8- BIT Microcontroller with 256K Bytes In-System Programmable Flash]
分类和应用: 闪存微控制器
文件页数/大小: 407 页 / 2985 K
品牌: ATMEL [ ATMEL ]
 浏览型号ATMEGA2560的Datasheet PDF文件第215页浏览型号ATMEGA2560的Datasheet PDF文件第216页浏览型号ATMEGA2560的Datasheet PDF文件第217页浏览型号ATMEGA2560的Datasheet PDF文件第218页浏览型号ATMEGA2560的Datasheet PDF文件第220页浏览型号ATMEGA2560的Datasheet PDF文件第221页浏览型号ATMEGA2560的Datasheet PDF文件第222页浏览型号ATMEGA2560的Datasheet PDF文件第223页  
ATmega640/1280/1281/2560/2561  
ple as shown in the figure. The clock recovery logic then uses samples 8, 9, and 10 for  
Normal mode, and samples 4, 5, and 6 for Double Speed mode (indicated with sample  
numbers inside boxes on the figure), to decide if a valid start bit is received. If two or  
more of these three samples have logical high levels (the majority wins), the start bit is  
rejected as a noise spike and the Receiver starts looking for the next high to low-transi-  
tion. If however, a valid start bit is detected, the clock recovery logic is synchronized and  
the data recovery can begin. The synchronization process is repeated for each start bit.  
Asynchronous Data Recovery When the receiver clock is synchronized to the start bit, the data recovery can begin.  
The data recovery unit uses a state machine that has 16 states for each bit in Normal  
mode and eight states for each bit in Double Speed mode. Figure 88 shows the sam-  
pling of the data bits and the parity bit. Each of the samples is given a number that is  
equal to the state of the recovery unit.  
Figure 88. Sampling of Data and Parity Bit  
RxD  
BIT n  
Sample  
(U2X = 0)  
1
1
2
3
2
4
5
3
6
7
4
8
9
5
10  
11  
6
12  
13  
7
14  
15  
8
16  
1
1
Sample  
(U2X = 1)  
The decision of the logic level of the received bit is taken by doing a majority voting of  
the logic value to the three samples in the center of the received bit. The center samples  
are emphasized on the figure by having the sample number inside boxes. The majority  
voting process is done as follows: If two or all three samples have high levels, the  
received bit is registered to be a logic 1. If two or all three samples have low levels, the  
received bit is registered to be a logic 0. This majority voting process acts as a low pass  
filter for the incoming signal on the RxDn pin. The recovery process is then repeated  
until a complete frame is received. Including the first stop bit. Note that the Receiver only  
uses the first stop bit of a frame.  
Figure 89 shows the sampling of the stop bit and the earliest possible beginning of the  
start bit of the next frame.  
Figure 89. Stop Bit Sampling and Next Start Bit Sampling  
(A)  
(B)  
(C)  
RxD  
STOP 1  
Sample  
(U2X = 0)  
1
1
2
3
2
4
5
3
6
7
4
8
9
5
10  
0/1 0/1 0/1  
Sample  
(U2X = 1)  
6
0/1  
The same majority voting is done to the stop bit as done for the other bits in the frame. If  
the stop bit is registered to have a logic 0 value, the Frame Error (FEn) Flag will be set.  
A new high to low transition indicating the start bit of a new frame can come right after  
the last of the bits used for majority voting. For Normal Speed mode, the first low level  
sample can be at point marked (A) in Figure 89. For Double Speed mode the first low  
level must be delayed to (B). (C) marks a stop bit of full length. The early start bit detec-  
tion influences the operational range of the Receiver.  
219  
2549A–AVR–03/05  
 复制成功!