欢迎访问ic37.com |
会员登录 免费注册
发布采购

ADSP-21062KS-160 参数 Datasheet PDF下载

ADSP-21062KS-160图片预览
型号: ADSP-21062KS-160
PDF下载: 下载PDF文件 查看货源
内容描述: ADSP- 2106x SHARC DSP单片机系列 [ADSP-2106x SHARC DSP Microcomputer Family]
分类和应用:
文件页数/大小: 48 页 / 368 K
品牌: ADI [ ADI ]
 浏览型号ADSP-21062KS-160的Datasheet PDF文件第27页浏览型号ADSP-21062KS-160的Datasheet PDF文件第28页浏览型号ADSP-21062KS-160的Datasheet PDF文件第29页浏览型号ADSP-21062KS-160的Datasheet PDF文件第30页浏览型号ADSP-21062KS-160的Datasheet PDF文件第32页浏览型号ADSP-21062KS-160的Datasheet PDF文件第33页浏览型号ADSP-21062KS-160的Datasheet PDF文件第34页浏览型号ADSP-21062KS-160的Datasheet PDF文件第35页  
ADSP-21062/ADSP-21062L  
DMA Handshake  
transfer is controlled by ADDR31-0, RD, WR, MS3-0, and ACK  
(not DMAG). For Paced Master mode, the Memory Read–Bus  
Master, Memory Write–Bus Master, and Synchronous Read/  
Write–Bus Master timing specifications for ADDR31-0, RD, WR,  
MS3-0, SW, PAGE, DATA47-0, and ACK also apply.  
These specifications describe the three DMA handshake modes.  
In all three modes DMAR is used to initiate transfers. For hand-  
shake mode, DMAG controls the latching or enabling of data  
externally. For external handshake mode, the data transfer is  
controlled by the ADDR31-0, RD, WR, SW, PAGE, MS3-0  
,
ACK, and DMAG signals. For Paced Master mode, the data  
ADSP-21062  
ADSP-21062L  
Max  
Parameter  
Min  
Max  
Min  
Units  
Timing Requirements:  
tSDRLC  
tSDRHC  
tWDR  
DMARx Low Setup Before CLKIN1  
5
5
5
5
ns  
ns  
DMARx High Setup Before CLKIN1  
DMARx Width Low  
(Nonsynchronous)  
6
2
6
2
ns  
ns  
ns  
ns  
ns  
ns  
tSDATDGL Data Setup After DMAGx Low2  
tHDATIDG Data Hold After DMAGx High  
tDATDRH Data Valid After DMARx High2  
tDMARLL DMARx Low Edge to Low Edge  
10 + 5DT/8  
16 + 7DT/8  
10 + 5DT/8  
16 + 7DT/8  
23 + 7DT/8  
6
23 + 7DT/8  
6
tDMARH  
DMARx Width High  
Switching Characteristics:  
tDDGL  
tWDGH  
tWDGL  
tHDGC  
DMAGx Low Delay After CLKIN  
DMAGx High Width  
DMAGx Low Width  
9 + DT/4  
6 + 3DT/8  
12 + 5DT/8  
–2 – DT/8  
8 + 9DT/16  
0
15 + DT/4  
6 – DT/8  
9 + DT/4  
6 + 3DT/8  
12 + 5DT/8  
–2 – DT/8  
8 + 9DT/16  
0
15 + DT/4  
6 – DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DMAGx High Delay After CLKIN  
tVDATDGH Data Valid Before DMAGx High3  
tDATRDGH Data Disable After DMAGx High4  
7
2
7
2
tDGWRL  
tDGWRH  
tDGWRR  
tDGRDL  
tDRDGH  
tDGRDR  
tDGWR  
WR Low Before DMAGx Low  
DMAGx Low Before WR High  
WR High Before DMAGx High  
RD Low Before DMAGx Low  
RD Low Before DMAGx High  
RD High Before DMAGx High  
DMAGx High to WR, RD, DMAGx  
Low  
–0.25  
–0.25  
10 + 5DT/8 + W  
1 + DT/16  
0
11 + 9DT/16 + W  
0
10 + 5DT/8 + W  
1 + DT/16  
0
11 + 9DT/16 + W  
0
3 + DT/16  
2
3 + DT/16  
2
3
3
5 + 3DT/8 + HI  
5 + 3DT/8 + HI  
17 + DT  
ns  
ns  
tDADGH  
tDDGHA  
Address/Select Valid to DMAGx High 17 + DT  
Address/Select Hold after DMAGx  
High  
–0.5  
–1  
ns  
W = (number of wait states specified in WAIT register) × tCK  
.
HI = tCK (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).  
NOTES  
1Only required for recognition in the current cycle.  
2tSDATDGL is the data setup requirement if DMARx is not being used to hold off completion of a write. Otherwise, if DMARx low holds off completion of the write, the  
data can be driven tDATDRH after DMARx is brought high.  
3tVDATDGH is valid if DMARx is not being used to hold off completion of a read. If DMARx is used to prolong the read, then tVDATDGH = 8 + 9DT/16 + (n × tCK) where  
n equals the number of extra cycles that the access is prolonged.  
4See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.  
REV. C  
–31–  
 复制成功!