RFC1
V
V
DD
GG
+
+
+
C5
L2
C6
C15
C16
C17
L5
C7
C9
C8
DUT
R2
R1
N2
C14
C4
C3
L3
L4
N1
RF
C1
L1
RF
OUTPUT
INPUT
C10
C11
C12
C2
C1 — 470 pF, Chip Capacitor
C2, C3, C11, C12 — 20–200 pF, Trimmer, ARCO #464
C4 — 100 pF, Chip Capacitor
C5, C17 — 100 µF, 15 V, Electrolytic
C6 — 0.001 µF, Disc Ceramic
C7, C8, C9, C10 — 330 pF, Chip Capacitor
C14 — 1200 pF, ATC Chip Capacitor
C15 — 910 pF, 500 V, Dipped Mica
C16 — 47 µF, 16 V, Electrolytic
L1 — 8 Turns, #20 AWG, 0.126″ ID
L2 — 5 Turns, #18 AWG, 0.142″ ID
L3 — 3 Turns, #20 AWG, 0.102″ ID
L4 — 7 Turns, #24 AWG, 0.070″ ID
L5 — 6.5 Turns, #18 AWG, 0.230″ ID, 0.5″ Long
N1, N2 — Type N Flange Mount
RFC1 — Ferroxcube VK–200–19/4B
R1 — 39 kΩ, 1/4 W Carbon
R2 — 150 Ω, 1/4 W Carbon
Board — G–10 .060″
Figure 1. 54 MHz Linear RF Test Circuit Electrical Schematic
TYPICAL CHARACTERISTICS
–10
–20
–30
100
90
IMD
3
80
70
60
50
40
30
20
10
IMD
5
–40
–50
–60
V
= 12.5 Vdc
= 400 mA
= 54 MHz, f = 54.001 MHz
V
= 12.5 Vdc
= 400 mA
DD
DQ
DD
DQ
I
f
I
f
= 54 MHz, f = 54.001 MHz
1
2
1
2
0
10
20
30
40
50
60
70
80
90
0
1
2
3
4
OUTPUT POWER (WATTS PEP)
P
, INPUT POWER (WATTS PEP)
in
Figure 2. IMD versus Output Power
Figure 3. Output Power versus Input Power
100
90
80
70
60
50
40
30
20
10
100
90
80
70
60
P
= 4 W
in
2 W
1 W
50
40
30
0.5 W
V
I
= 12.5 Vdc
= 400 mA
DD
DQ
I
= 400 mA
f = 54 MHz
DQ
20
10
0
f = 54 MHz
0
1
2
3
4
9
10
11
12
13
14
15
16
P
, INPUT POWER (WATTS CW)
V , SUPPLY VOLTAGE (VOLTS)
DD
in
Figure 4. Output Power versus Input Power
Figure 5. Output Power versus Supply Voltage
MOTOROLA RF DEVICE DATA
MRF255
3