欢迎访问ic37.com |
会员登录 免费注册
发布采购

PIC18F2450-I/SO 参数 Datasheet PDF下载

PIC18F2450-I/SO图片预览
型号: PIC18F2450-I/SO
PDF下载: 下载PDF文件 查看货源
内容描述: 28 /40/ 44引脚,高性能, 12 MIPS ,增强型闪存, USB微控制器采用纳瓦技术 [28/40/44-Pin, High-Performance, 12 MIPS, Enhanced Flash, USB Microcontrollers with nanoWatt Technology]
分类和应用: 闪存微控制器和处理器外围集成电路光电二极管PC时钟
文件页数/大小: 320 页 / 5591 K
品牌: MICROCHIP [ MICROCHIP ]
 浏览型号PIC18F2450-I/SO的Datasheet PDF文件第35页浏览型号PIC18F2450-I/SO的Datasheet PDF文件第36页浏览型号PIC18F2450-I/SO的Datasheet PDF文件第37页浏览型号PIC18F2450-I/SO的Datasheet PDF文件第38页浏览型号PIC18F2450-I/SO的Datasheet PDF文件第40页浏览型号PIC18F2450-I/SO的Datasheet PDF文件第41页浏览型号PIC18F2450-I/SO的Datasheet PDF文件第42页浏览型号PIC18F2450-I/SO的Datasheet PDF文件第43页  
PIC18F2450/4450  
3.3  
Sleep Mode  
3.4  
Idle Modes  
The power-managed Sleep mode in the PIC18F2450/  
4450 devices is identical to the legacy Sleep mode  
offered in all other PICmicro devices. It is entered by  
clearing the IDLEN bit (the default state on device  
Reset) and executing the SLEEPinstruction. This shuts  
down the selected oscillator (Figure 3-5). All clock  
source status bits are cleared.  
The Idle modes allow the controller’s CPU to be  
selectively shut down while the peripherals continue to  
operate. Selecting a particular Idle mode allows users  
to further manage power consumption.  
If the IDLEN bit is set to ‘1’ when a SLEEPinstruction is  
executed, the peripherals will be clocked from the clock  
source selected using the SCS1:SCS0 bits; however, the  
CPU will not be clocked. The clock source status bits are  
not affected. Setting IDLEN and executing a SLEEP  
instruction provides a quick method of switching from a  
given Run mode to its corresponding Idle mode.  
Entering the Sleep mode from any other mode does not  
require a clock switch. This is because no clocks are  
needed once the controller has entered Sleep. If the  
WDT is selected, the INTRC source will continue to  
operate. If the Timer1 oscillator is enabled, it will also  
continue to run.  
If the WDT is selected, the INTRC source will continue  
to operate. If the Timer1 oscillator is enabled, it will also  
continue to run.  
When a wake event occurs in Sleep mode (by interrupt,  
Reset or WDT time-out), the device will not be clocked  
until the clock source selected by the SCS1:SCS0 bits  
becomes ready (see Figure 3-6), or it will be clocked  
from the internal oscillator if either the Two-Speed  
Start-up or the Fail-Safe Clock Monitor are enabled  
(see Section 18.0 “Special Features of the CPU”). In  
either case, the OSTS bit is set when the primary clock  
is providing the device clocks. The IDLEN and SCS bits  
are not affected by the wake-up.  
Since the CPU is not executing instructions, the only  
exits from any of the Idle modes are by interrupt, WDT  
time-out or a Reset. When a wake event occurs, CPU  
execution is delayed by an interval of TCSD  
(parameter 38, Table 21-10) while it becomes ready to  
execute code. When the CPU begins executing code,  
it resumes with the same clock source for the current  
Idle mode. For example, when waking from RC_IDLE  
mode, the internal oscillator will clock the CPU and  
peripherals (in other words, RC_RUN mode). The  
IDLEN and SCS bits are not affected by the wake-up.  
While in any Idle mode or Sleep mode, a WDT time-out  
will result in a WDT wake-up to the Run mode currently  
specified by the SCS1:SCS0 bits.  
FIGURE 3-5:  
TRANSITION TIMING FOR ENTRY TO SLEEP MODE  
Q1 Q2 Q3 Q4 Q1  
OSC1  
CPU  
Clock  
Peripheral  
Clock  
Sleep  
Program  
Counter  
PC  
PC + 2  
FIGURE 3-6:  
TRANSITION TIMING FOR WAKE FROM SLEEP (HSPLL)  
Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q2 Q3 Q4 Q1 Q2  
Q1  
OSC1  
(1)  
(1)  
TOST  
TPLL  
PLL Clock  
Output  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
PC + 6  
Wake Event  
OSTS bit Set  
Note1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
© 2006 Microchip Technology Inc.  
Advance Information  
DS39760A-page 37  
 复制成功!