PIC18F45J10 FAMILY
FIGURE 5-2:
EXTERNAL POWER-ON
RESET CIRCUIT (FOR
SLOW VDD POWER-UP)
5.2
Master Clear (MCLR)
The MCLR pin provides a method for triggering a hard
external Reset of the device. A Reset is generated by
holding the pin low. PIC18 extended microcontroller
devices have a noise filter in the MCLR Reset path
which detects and ignores small pulses.
VDD
VDD
D
R
The MCLR pin is not driven low by any internal Resets,
including the WDT.
R1
MCLR
PIC18F45J10
C
5.3
Power-on Reset (POR)
A Power-on Reset condition is generated on-chip
whenever VDD rises above a certain threshold. This
allows the device to start in the initialized state when
VDD is adequate for operation.
Note 1: External Power-on Reset circuit is required
only if the VDD power-up slope is too slow.
The diode D helps discharge the capacitor
quickly when VDD powers down.
To take advantage of the POR circuitry, tie the MCLR
pin through a resistor (1 kΩ to 10 kΩ) to VDD. This will
eliminate external RC components usually needed to
create a Power-on Reset delay. A minimum rise rate for
VDD is specified (parameter D004). For a slow rise
time, see Figure 5-2.
2: R < 40 kΩ is recommended to make sure that
the voltage drop across R does not violate
the device’s electrical specification.
3: R1 ≥ 1 kΩ will limit any current flowing into
MCLR from external capacitor C, in the event
of MCLR pin breakdown, due to Electrostatic
Discharge (ESD) or Electrical Overstress
(EOS).
When the device starts normal operation (i.e., exits the
Reset condition), device operating parameters
(voltage, frequency, temperature, etc.) must be met to
ensure operation. If these conditions are not met, the
device must be held in Reset until the operating
conditions are met.
5.4.1
DETECTING BOR
The BOR bit always resets to ‘0’ on any Brown-out
Reset or Power-on Reset event. This makes it difficult
to determine if a Brown-out Reset event has occurred
just by reading the state of BOR alone. A more reliable
method is to simultaneously check the state of both
POR and BOR. This assumes that the POR bit is reset
to ‘1’ in software immediately after any Power-on Reset
event. If BOR is ‘0’ while POR is ‘1’, it can be reliably
assumed that a Brown-out Reset event has occurred.
Power-on Reset events are captured by the POR bit
(RCON<1>). The state of the bit is set to ‘0’ whenever
a Power-on Reset occurs; it does not change for any
other Reset event. POR is not reset to ‘1’ by any
hardware event. To capture multiple events, the user
manually resets the bit to ‘1’ in software following any
Power-on Reset.
In devices designated with an “LF” part number (such
as PIC18LF25J10), Brown-out Reset functionality is
disabled. In this case, the BOR bit cannot be used to
determine a Brown-out Reset event. The BOR bit is still
cleared by a Power-on Reset event.
5.4
Brown-out Reset (BOR)
(PIC18F2XJ10/4XJ10 Devices Only)
The PIC18F45J10 family of devices incorporates a
simple BOR function when the internal regulator is
enabled (ENVREG pin is tied to VDD). Any drop of VDD
below VBOR (parameter D005) for greater than time
TBOR (parameter 35) will reset the device. A Reset may
or may not occur if VDD falls below VBOR for less than
TBOR. The chip will remain in Brown-out Reset until
VDD rises above VBOR.
Once a BOR has occurred, the Power-up Timer will
keep the chip in Reset for TPWRT (parameter 33). If
VDD drops below VBOR while the Power-up Timer is
running, the chip will go back into a Brown-out Reset
and the Power-up Timer will be initialized. Once VDD
rises above VBOR, the Power-up Timer will execute the
additional time delay.
© 2009 Microchip Technology Inc.
DS39682E-page 43