PIC18CXX2
14.3.1.2 RECEPTION
Then pin RC3/SCK/SCL should be enabled by setting
bit CKP (SSPCON<4>). The master must monitor the
SCL pin prior to asserting another clock pulse. The
slave devices may be holding off the master by stretch-
ing the clock. The eight data bits are shifted out on the
falling edge of the SCL input. This ensures that the SDA
signal is valid during the SCL high time (Figure 14-9).
When the R/W bit of the address byte is clear and an
address match occurs, the R/W bit of the SSPSTAT
register is cleared. The received address is loaded into
the SSPBUF register.
When the address byte overflow condition exists, then
no acknowledge (ACK) pulse is given. An overflow con-
dition is defined as either bit BF (SSPSTAT<0>) is set
or bit SSPOV (SSPCON<6>) is set.
An MSSP interrupt is generated for each data transfer
byte. The SSPIF bit must be cleared in software and
the SSPSTAT register is used to determine the status
of the byte. The SSPIF bit is set on the falling edge of
the ninth clock pulse.
An MSSP interrupt is generated for each data transfer
byte. Flag bit SSPIF (PIR1<3>) must be cleared in soft-
ware. The SSPSTAT register is used to determine the
status of the byte.
As a slave-transmitter, the ACK pulse from the mas-
ter-receiver is latched on the rising edge of the ninth
SCL input pulse. If the SDA line is high (not ACK),
then the data transfer is complete. When the ACK is
latched by the slave, the slave logic is reset (resets
SSPSTAT register) and the slave monitors for
another occurrence of the START bit. If the SDA line
was low (ACK), the transmit data must be loaded into
the SSPBUF register, which also loads the SSPSR
register. Pin RC3/SCK/SCL should be enabled by
setting bit CKP.
14.3.1.3 TRANSMISSION
When the R/W bit of the incoming address byte is set
and an address match occurs, the R/W bit of the
SSPSTAT register is set. The received address is
loaded into the SSPBUF register. The ACK pulse will
be sent on the ninth bit and pin RC3/SCK/SCL is held
low. The transmit data must be loaded into the SSP-
BUF register, which also loads the SSPSR register.
FIGURE 14-8: I2C SLAVE MODE WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)
Receiving Address
A7 A6 A5 A4
R/W=0
ACK
Receiving Data
Receiving Data
ACK
Not ACK
9
SDA
A3 A2 A1
D7 D6 D5 D4 D3 D2
D0
8
D7 D6
D5
D4 D3
D2
D0
8
D1
7
D1
7
1
2
3
4
5
6
1
2
3
4
9
5
6
1
2
3
4
5
6
7
8
9
P
SCL
S
SSPIF
Bus Master
terminates
transfer
BF (SSPSTAT<0>)
Cleared in software
SSPBUF register is read
SSPOV (SSPCON1<6>)
Bit SSPOV is set because the SSPBUF register is still full.
ACK is not sent.
FIGURE 14-9: I2C SLAVE MODE WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)
R/W = 0
Not ACK
Receiving Address
R/W = 1
ACK
Transmitting Data
SDA
SCL
A7 A6 A5 A4 A3 A2 A1
D7 D6 D5 D4 D3 D2 D1 D0
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
S
P
SCL held low
while CPU
responds to SSPIF
Data in
sampled
SSPIF
BF (SSPSTAT<0>)
Cleared in software
SSPBUF is written in software
From SSP interrupt
service routine
CKP (SSPCON1<4>)
Set bit after writing to SSPBUF
(the SSPBUF must be written-to
before the CKP bit can be set)
DS39026B-page 130
Preliminary
7/99 Microchip Technology Inc.