欢迎访问ic37.com |
会员登录 免费注册
发布采购

PIC16LF1947-E/MR 参数 Datasheet PDF下载

PIC16LF1947-E/MR图片预览
型号: PIC16LF1947-E/MR
PDF下载: 下载PDF文件 查看货源
内容描述: [64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt XLP Technology]
分类和应用: 微控制器
文件页数/大小: 440 页 / 4740 K
品牌: MICROCHIP [ MICROCHIP ]
 浏览型号PIC16LF1947-E/MR的Datasheet PDF文件第240页浏览型号PIC16LF1947-E/MR的Datasheet PDF文件第241页浏览型号PIC16LF1947-E/MR的Datasheet PDF文件第242页浏览型号PIC16LF1947-E/MR的Datasheet PDF文件第243页浏览型号PIC16LF1947-E/MR的Datasheet PDF文件第245页浏览型号PIC16LF1947-E/MR的Datasheet PDF文件第246页浏览型号PIC16LF1947-E/MR的Datasheet PDF文件第247页浏览型号PIC16LF1947-E/MR的Datasheet PDF文件第248页  
PIC16F/LF1946/47  
23.2.4  
SPI SLAVE MODE  
23.2.5  
SLAVE SELECT  
SYNCHRONIZATION  
In Slave mode, the data is transmitted and received as  
external clock pulses appear on SCKx. When the last  
bit is latched, the SSPxIF interrupt flag bit is set.  
The Slave Select can also be used to synchronize com-  
munication. The Slave Select line is held high until the  
master device is ready to communicate. When the  
Slave Select line is pulled low, the slave knows that a  
new transmission is starting.  
Before enabling the module in SPI Slave mode, the clock  
line must match the proper Idle state. The clock line can  
be observed by reading the SCKx pin. The Idle state is  
determined by the CKP bit of the SSPxCON1 register.  
If the slave fails to receive the communication properly,  
it will be reset at the end of the transmission, when the  
Slave Select line returns to a high state. The slave is  
then ready to receive a new transmission when the  
Slave Select line is pulled low again. If the Slave Select  
line is not used, there is a risk that the slave will even-  
tually become out of sync with the master. If the slave  
misses a bit, it will always be one bit off in future trans-  
missions. Use of the Slave Select line allows the slave  
and master to align themselves at the beginning of  
each transmission.  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCKx pin. This exter-  
nal clock must meet the minimum high and low times  
as specified in the electrical specifications.  
While in Sleep mode, the slave can transmit/receive  
data. The shift register is clocked from the SCKx pin  
input and when a byte is received, the device will gen-  
erate an interrupt. If enabled, the device will wake-up  
from Sleep.  
23.2.4.1 Daisy-Chain Configuration  
The SSx pin allows a Synchronous Slave mode. The  
SPI must be in Slave mode with SSx pin control  
enabled (SSPxCON1<3:0> = 0100).  
The SPI bus can sometimes be connected in a  
daisy-chain configuration. The first slave output is con-  
nected to the second slave input, the second slave  
output is connected to the third slave input, and so on.  
The final slave output is connected to the master input.  
Each slave sends out, during a second group of clock  
pulses, an exact copy of what was received during the  
first group of clock pulses. The whole chain acts as  
one large communication shift register. The  
daisy-chain feature only requires a single Slave Select  
line from the master device.  
When the SSx pin is low, transmission and reception  
are enabled and the SDOx pin is driven.  
When the SSx pin goes high, the SDOx pin is no longer  
driven, even if in the middle of a transmitted byte and  
becomes a floating output. External pull-up/pull-down  
resistors may be desirable depending on the applica-  
tion.  
Note 1: When the SPI is in Slave mode with SSx  
pin control enabled (SSPxCON1<3:0> =  
0100), the SPI module will reset if the SSx  
pin is set to VDD.  
Figure 23-7 shows the block diagram of a typical  
Daisy-Chain connection when operating in SPI Mode.  
In a daisy-chain configuration, only the most recent  
byte on the bus is required by the slave. Setting the  
BOEN bit of the SSPxCON3 register will enable writes  
to the SSPxBUF register, even if the previous byte has  
not been read. This allows the software to ignore data  
that may not apply to it.  
2: When the SPI is used in Slave mode with  
CKE set; the user must enable SSx pin  
control.  
3: While operated in SPI Slave mode the  
SMP bit of the SSPxSTAT register must  
remain clear.  
When the SPI module resets, the bit counter is forced  
to ‘0’. This can be done by either forcing the SSx pin to  
a high level or clearing the SSPxEN bit.  
DS41414A-page 242  
Preliminary  
2010 Microchip Technology Inc.  
 复制成功!