欢迎访问ic37.com |
会员登录 免费注册
发布采购

IC-TW2 参数 Datasheet PDF下载

IC-TW2图片预览
型号: IC-TW2
PDF下载: 下载PDF文件 查看货源
内容描述: 8 - BIT单/集成了EEPROM COS插值IC [8-BIT SIN/COS INTERPOLATION IC WITH INTEGRATED EEPROM]
分类和应用: 可编程只读存储器电动程控只读存储器电可擦编程只读存储器
文件页数/大小: 30 页 / 459 K
品牌: ICHAUS [ IC-HAUS GMBH ]
 浏览型号IC-TW2的Datasheet PDF文件第15页浏览型号IC-TW2的Datasheet PDF文件第16页浏览型号IC-TW2的Datasheet PDF文件第17页浏览型号IC-TW2的Datasheet PDF文件第18页浏览型号IC-TW2的Datasheet PDF文件第20页浏览型号IC-TW2的Datasheet PDF文件第21页浏览型号IC-TW2的Datasheet PDF文件第22页浏览型号IC-TW2的Datasheet PDF文件第23页  
iC-TW2 8-BIT SIN/COS INTERPOLATION IC  
WITH INTEGRATED EEPROM  
Rev D3, Page 19/30  
CONFIGURATION DEPENDENCIES  
The following paragraph describes dependencies be- Always use the highest accuracy possible to still satisfy  
tween several chip configuration settings and system finput  
performance. It is vital to understand the implication of  
.
system parameters to be able to tune the iC-TW2 for 4. Determine fosc. Selecting the slowest fosc possible  
full performance. It is especially important to correctly lowers power consumption and improves jitter perfor-  
program register FREQ(6:0), since this directly affects mance.  
accuracy and maximum allowed input frequency.  
Clock tuning  
Selecting configuration parameters  
1. Observe fosc/32 on pin A_U during calibra-  
Follow the outlined procedure below to select the tion mode 2.  
proper configuration. Refer to Table 22 for reference.  
2. Use CLOCK(4:0) to tune the oscillator to the desired  
1. Determine the maximum input frequency finput as re- fcal frequency. (fpinA = fosc/32)  
quired by the application.  
3. Be aware that the oscillator can have as much  
2. Calculate fcore based on finput and interpolation rate as 20 % frequency variation over the operating tem-  
INTER(7:0).  
perature range (-40 °C to 125 °C). The oscillator runs  
slower at higher temperatures. To guarantee perfor-  
3. Select fsystem based on the accuracy requirement. mance at 125 °C it is necessary to tune the oscillator  
See Table 21. Accuracy is a function of interpolation to typ. 12 % higher frequency at room temperature of  
and frequency (registers INTER(7:0) and FREQ(6:0)). 25 °C.  
INTER(7:0)  
129 to 256; 0  
65 to 128  
FREQ(6:0)  
Accuracy Mode  
High accuracy  
Medium accuracy  
High accuracy  
Low accuracy  
Theoretical Absolute Accuracy  
0 to 127  
±2.8°  
±5.6°  
±2.8 °  
±11.2°  
±5.6°  
±2.8°  
0
1 to 127  
1 to 64  
0
1
Medium accuracy  
High accuracy  
2 to 127  
Table 21: Accuracy modes  
Description  
Parameter / Condition  
Requirement or relationship  
Control bit  
Oscillator frequency  
fosc [Hz]  
<30 MHz, when VDD = 5 V  
<25 MHz, when VDD = 3.3 V  
CLOCK(4:0)  
System Clock  
fsystem [Hz]  
fsystem = fosc, if CLKDIV = 0  
fsystem = fosc/2, if CLKDIV = 1  
CLKDIV  
Core Clock  
fcore [Hz]  
ffront [Hz]  
fcore = fsystem / (1 + FREQ(6:0))  
FREQ(6:0)  
Max front-end input  
frequency  
ffront = fsystem / 256, if High Accuracy  
ffront = fsystem / 128, if Medium Accuracy  
ffront = fsystem / 64, if Low Accuracy  
FREQ(6:0)  
INTER(7:0)  
Max back-end frequency fback [Hz]  
fback = fcore / INTER(7:0)  
INTER(7:0)  
Max iC-TW2 input  
frequency  
finput [Hz]  
finput = min(ffront, fback)  
Min A/B edge separation tedge  
tedge = 1 / fcore  
A/B edge granularity  
Hysteresis  
tgran  
tgran = 1 / fsystem  
±(HYST(1:0) x 1.4 °), if High Accuracy  
HYST(1:0)  
±(HYST(1:0) x 2.8 °) if Medium or Low Accuracy  
SIN/COS to A/B output  
latency  
tlatency [µs]  
10 / fsystem [MHz] + 0.2, if no filter  
18 / fsystem [MHz] + 0.2, if 8 sample average  
26 / fsystem [MHz] + 0.2, if 16 sample average  
FILTER(1:0)  
Table 22: Configuration dependencies