欢迎访问ic37.com |
会员登录 免费注册
发布采购

MPC8347ECVVAGDB 参数 Datasheet PDF下载

MPC8347ECVVAGDB图片预览
型号: MPC8347ECVVAGDB
PDF下载: 下载PDF文件 查看货源
内容描述: MPC8347EA的PowerQUICC II Pro整合型主机处理器的硬件规格 [MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications]
分类和应用: 外围集成电路PC时钟
文件页数/大小: 99 页 / 727 K
品牌: FREESCALE [ Freescale ]
 浏览型号MPC8347ECVVAGDB的Datasheet PDF文件第81页浏览型号MPC8347ECVVAGDB的Datasheet PDF文件第82页浏览型号MPC8347ECVVAGDB的Datasheet PDF文件第83页浏览型号MPC8347ECVVAGDB的Datasheet PDF文件第84页浏览型号MPC8347ECVVAGDB的Datasheet PDF文件第86页浏览型号MPC8347ECVVAGDB的Datasheet PDF文件第87页浏览型号MPC8347ECVVAGDB的Datasheet PDF文件第88页浏览型号MPC8347ECVVAGDB的Datasheet PDF文件第89页  
Thermal  
Table 65. Package Thermal Characteristics for TBGA (continued)  
Characteristic  
Symbol  
Value  
Unit  
Notes  
Junction-to-package natural convection on top  
ψJT  
1
°C/W  
6
Notes:  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal, 1 m/s is approximately equal to 200 linear feet per minute (LFM).  
4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on  
the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method  
1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature  
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
Table 66 provides the package thermal characteristics for the 620 29 × 29 mm PBGA of the MPC8347EA.  
Table 66. Package Thermal Characteristics for PBGA  
Parameter  
Symbol  
Value  
Unit  
Notes  
Junction-to-ambient natural convection on single-layer board (1s)  
Junction-to-ambient natural convection on four-layer board (2s2p)  
Junction-to-ambient (at 200 ft/min) on single-layer board (1s)  
Junction-to-ambient (at 200 ft/min) on four-layer board (2s2p)  
Junction-to-board thermal  
RθJA  
RθJMA  
RθJMA  
RθJMA  
RθJB  
21  
15  
17  
12  
6
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
1, 3  
1, 3  
1, 3  
4
Junction-to-case thermal  
RθJC  
5
5
Junction-to-package natural convection on top  
Notes  
ψJT  
5
6
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on  
the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method  
1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature  
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
20.2 Thermal Management Information  
For the following sections, P = (V × I ) + P where P is the power dissipation of the I/O drivers.  
D
DD  
DD  
I/O  
I/O  
See Table 5 for I/O power dissipation values.  
MPC8347EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 12  
Freescale Semiconductor  
85