欢迎访问ic37.com |
会员登录 免费注册
发布采购

ATMEGA64A-AU 参数 Datasheet PDF下载

ATMEGA64A-AU图片预览
型号: ATMEGA64A-AU
PDF下载: 下载PDF文件 查看货源
内容描述: 8位微控制器,带有64K字节的系统内可编程闪存 [8-bit Microcontroller with 64K Bytes In-System Programmable Flash]
分类和应用: 闪存微控制器
文件页数/大小: 392 页 / 7964 K
品牌: ATMEL [ ATMEL ]
 浏览型号ATMEGA64A-AU的Datasheet PDF文件第236页浏览型号ATMEGA64A-AU的Datasheet PDF文件第237页浏览型号ATMEGA64A-AU的Datasheet PDF文件第238页浏览型号ATMEGA64A-AU的Datasheet PDF文件第239页浏览型号ATMEGA64A-AU的Datasheet PDF文件第241页浏览型号ATMEGA64A-AU的Datasheet PDF文件第242页浏览型号ATMEGA64A-AU的Datasheet PDF文件第243页浏览型号ATMEGA64A-AU的Datasheet PDF文件第244页  
ATmega64A  
If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special  
care must be taken when updating the ADMUX Register, in order to control which conversion  
will be affected by the new settings.  
If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the  
ADMUX Register is changed in this period, the user cannot tell if the next conversion is based  
on the old or the new settings. ADMUX can be safely updated in the following ways:  
1. When ADATE or ADEN is cleared.  
2. During conversion, minimum one ADC clock cycle after the trigger event.  
3. After a conversion, before the interrupt flag used as trigger source is cleared.  
When updating ADMUX in one of these conditions, the new settings will affect the next ADC  
conversion.  
Special care should be taken when changing differential channels. Once a differential channel  
has been selected, the gain stage may take as much as 125 µs to stabilize to the new value.  
Thus conversions should not be started within the first 125 µs after selecting a new differential  
channel. Alternatively, conversion results obtained within this period should be discarded.  
The same settling time should be observed for the first differential conversion after changing  
ADC reference (by changing the REFS1:0 bits in ADMUX).  
If the JTAG interface is enabled, the function of ADC channels on PORTF7:4 is overridden.  
Refer to Table 13-18, “Port F Pins Alternate Functions,” on page 85.  
23.6.1  
ADC Input Channels  
When changing channel selections, the user should observe the following guidelines to ensure  
that the correct channel is selected:  
In Single Conversion mode, always select the channel before starting the conversion. The chan-  
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the  
simplest method is to wait for the conversion to complete before changing the channel selection.  
In Free Running mode, always select the channel before starting the first conversion. The chan-  
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the  
simplest method is to wait for the first conversion to complete, and then change the channel  
selection. Since the next conversion has already started automatically, the next result will reflect  
the previous channel selection. Subsequent conversions will reflect the new channel selection.  
When switching to a differential gain channel, the first conversion result may have a poor accu-  
racy due to the required settling time for the automatic offset cancellation circuitry. The user  
should preferably disregard the first conversion result.  
23.6.2  
ADC Voltage Reference  
The reference voltage for the ADC (VREF) indicates the conversion range for the ADC. Single  
ended channels that exceed VREF will result in codes close to 0x3FF. VREF can be selected as  
either AVCC, internal 2.56V reference, or external AREF pin.  
AVCC is connected to the ADC through a passive switch. The internal 2.56V reference is gener-  
ated from the internal bandgap reference (VBG) through an internal amplifier. In either case, the  
external AREF pin is directly connected to the ADC, and the reference voltage can be made  
more immune to noise by connecting a capacitor between the AREF pin and ground. VREF can  
also be measured at the AREF pin with a high impedant voltmeter. Note that VREF is a high  
impedant source, and only a capacitive load should be connected in a system.  
240  
8160C–AVR–07/09  
 复制成功!