X1227
Analog Trimming Register (ATR) (Non-volatile)
– Write one to 8 bytes to the Clock/Control Registers
with the desired clock, alarm, or control data. This
sequence starts with a start bit, requires a slave byte
of “11011110” and an address within the CCR and is
terminated by a stop bit. A write to the CCR changes
EEPROM values so these initiate a nonvolatile write
cycle and will take up to 10ms to complete.Writes to
undefined areas have no effect. The RWEL bit is
reset by the completion of a nonvolatile write cycle,
so the sequence must be repeated to again initiate
another change to the CCR contents. If the
Six analog trimming Bits from ATR5 to ATR3 are pro-
vided to adjust the on-chip loading capacitance range.
The on-chip load capacitance ranges from 3.25pF to
18.75pF. Each bit has a different weight for capaci-
tance adjustment. Using a Citizen CFS-206 crystal
with different ATR bit combinations provides an esti-
mated ppm range from +116ppm to -37ppm to the
nominal frequency compensation. The combination of
digital and analog trimming can give up to +146ppm
adjustment.
sequence is not completed for any reason (by send-
ing an incorrect number of bits or sending a start
instead of a stop, for example) the RWEL bit is not
reset and the device remains in an active mode.
The on-chip capacitance can be calculated as follows:
C
= [(ATR value, decimal) x 0.25pF] + 11.0pF
ATR
Note that the ATR values are in two’s complement,
with ATR(000000) = 11.0pF, so the entire range runs
from 3.25pF to 18.75pF in 0.25pF steps.
– Writing all zeros to the status register resets both the
WEL and RWEL bits.
– A read operation occurring between any of the
previous operations will not interrupt the register
write operation.
The values calculated above are typical, and total load
capacitance seen by the crystal will include approxi-
mately 2pF of package and board capacitance in addi-
tion to the ATR value.
See Application section and Xicor’s Application Note
AN154 for more information.
WRITING TO THE CLOCK/CONTROL REGISTERS
Changing any of the nonvolatile bits of the clock/con-
trol register requires the following steps:
– Write a 02h to the Status Register to set the Write
Enable Latch (WEL). This is a volatile operation,
so there is no delay after the write. (Operation
preceeded by a start and ended with a stop).
– Write a 06h to the Status Register to set both the
Register Write Enable Latch (RWEL) and the WEL
bit.This is also a volatile cycle.The zeros in the data
byte are required. (Operation preceeded by a start
and ended with a stop).
Characteristics subject to change without notice. 7 of 28
REV 1.1.20 1/13/03
www.xicor.com