欢迎访问ic37.com |
会员登录 免费注册
发布采购

MSP430F6723IPZR 参数 Datasheet PDF下载

MSP430F6723IPZR图片预览
型号: MSP430F6723IPZR
PDF下载: 下载PDF文件 查看货源
内容描述: 混合信号微控制器 [MIXED SIGNAL MICROCONTROLLER]
分类和应用: 微控制器和处理器外围集成电路时钟
文件页数/大小: 121 页 / 1013 K
品牌: TI [ TEXAS INSTRUMENTS ]
 浏览型号MSP430F6723IPZR的Datasheet PDF文件第69页浏览型号MSP430F6723IPZR的Datasheet PDF文件第70页浏览型号MSP430F6723IPZR的Datasheet PDF文件第71页浏览型号MSP430F6723IPZR的Datasheet PDF文件第72页浏览型号MSP430F6723IPZR的Datasheet PDF文件第74页浏览型号MSP430F6723IPZR的Datasheet PDF文件第75页浏览型号MSP430F6723IPZR的Datasheet PDF文件第76页浏览型号MSP430F6723IPZR的Datasheet PDF文件第77页  
MSP430F673x  
MSP430F672x  
www.ti.com  
SLAS731A DECEMBER 2011REVISED APRIL 2012  
SD24_B, Performance (continued)  
fSD24 = 1 MHz, SD24OSRx = 256, SD24REFS = 1  
PARAMETER  
TEST CONDITIONS  
VCC  
3 V  
3 V  
3 V  
MIN  
-1  
TYP  
MAX UNIT  
SD24GAIN: 1, with external reference (1.2 V)  
SD24GAIN: 8, with external reference (1.2 V)  
SD24GAIN: 32, with external reference (1.2 V)  
+1  
EG  
Gain error(1)  
-2  
+2  
+2  
%
-2  
Gain error temperature  
coefficient(2), internal  
reference  
ΔEG/ΔT  
ΔEG/ΔVCC  
SD24GAIN: 1/8/32 (with internal reference)  
3 V  
50 ppm/°C  
SD24GAIN: 1  
0.15  
0.15  
0.4  
(3)  
Gain error vs VCC  
SD24GAIN: 8  
%/V  
SD24GAIN: 32  
SD24GAIN: 1 (with Vdiff = 0V)  
SD24GAIN: 8  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
3 V  
2.3  
0.73  
EOS[V]  
Offset error(4)  
Offset error(4)  
mV  
SD24GAIN: 32  
SD24GAIN: 1 (with Vdiff = 0V)  
SD24GAIN: 8  
0.18  
0.2  
-0.2  
-0.5  
-0.5  
EOS[FS]  
0.5 % FS  
0.5  
SD24GAIN: 32  
SD24GAIN: 1  
1
0.15  
0.1  
Offset error temperature  
coefficient(5)  
ΔEOS/ΔT  
ΔEOS/ΔVCC  
CMRR,DC  
SD24GAIN: 8  
uV/°C  
uV/V  
dB  
SD24GAIN: 32  
SD24GAIN: 1  
600  
100  
50  
(6)  
Offset error vs VCC  
SD24GAIN: 8  
SD24GAIN: 32  
SD24GAIN: 1  
3 V  
3 V  
3 V  
-110  
-110  
-110  
Common mode rejection  
at DC(7)  
SD24GAIN: 8  
SD24GAIN: 32  
(1) The gain error EG specifies the deviation of the actual gain Gact from the nominal gain Gnom: EG = (Gact - Gnom)/Gnom. It covers process,  
temperature and supply voltage variations.  
(2) The gain error temperature coefficient ΔEG/ ΔT specifies the variation of the gain error EG over temperature (EG(T) = (Gact(T) -  
Gnom)/Gnom) using the box method (i.e. min. and max. values):  
ΔEG/ ΔT = (MAX(EG(T)) - MIN(EG(T) ) / (MAX(T) - MIN(T)) = (MAX(Gact(T)) - MIN(Gact(T)) / Gnom / (MAX(T) - MIN(T))  
with T ranging from -40°C to +85°C.  
(3) The gain error vs VCC coefficient ΔEG/ ΔVCC specifies the variation of the gain error EG over supply voltage (EG(VCC) = (Gact(VCC) -  
Gnom)/Gnom) using the box method (i.e. min. and max. values):  
ΔEG/ ΔVCC = (MAX(EG(VCC)) - MIN(EG(VCC) ) / (MAX(VCC) - MIN(VCC)) = (MAX(Gact(VCC)) - MIN(Gact(VCC)) / Gnom / (MAX(VCC) -  
MIN(VCC))  
with VCC ranging from 2.4V to 3.6V.  
(4) The offset error EOS is measured with shorted inputs in 2's complement mode with +100% FS = VREF/G and -100% FS = -VREF/G.  
Conversion between EOS [FS] and EOS [V] is as follows: EOS [FS] = EOS [V]×G/VREF; EOS [V] = EOS [FS]×VREF/G.  
(5) The offset error temperature coefficient ΔEOS/ ΔT specifies the variation of the offset error EOS over temperature using the box method  
(i.e. min. and max. values):  
ΔEOS/ ΔT = (MAX(EOS(T)) - MIN(EOS(T) ) / (MAX(T) - MIN(T))  
with T ranging from -40°C to +85°C.  
(6) The offset error vs VCC ΔEOS/ ΔVCC specifies the variation of the offset error EOS over supply voltage using the box method (i.e. min.  
and max. values):  
ΔEOS/ ΔVCC = (MAX(EOS(VCC)) - MIN(EOS(VCC) ) / (MAX(VCC) - MIN(VCC))  
with VCC ranging from 2.4V to 3.6V.  
(7) The DC CMRR specifies the change in the measured differential input voltage value when the common mode voltage varies:  
DC CMRR = -20log(ΔMAX/FSR) with ΔMAX being the difference between the minium value and the maximum value measured when  
sweeping the common mode voltage (for example, calculating with 16-bits FSR = 65536 a maximum change by 1 LSB results in -  
20log(1/65536) -96 dB) .  
The DC CMRR is measured with both inputs connected to the common mode voltage (i.e. no differential input signal is applied), and the  
common mode voltage is swept from -1V to VCC  
.
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
73  
 复制成功!