欢迎访问ic37.com |
会员登录 免费注册
发布采购

LM3886T/NOPB 参数 Datasheet PDF下载

LM3886T/NOPB图片预览
型号: LM3886T/NOPB
PDF下载: 下载PDF文件 查看货源
内容描述: LM3886序曲音频功率放大器系列高性能68W音频功率放大器瓦特/静音 [LM3886 Overture Audio Power Amplifier Series High-Performance 68W Audio Power Amplifier w/Mute]
分类和应用: 放大器功率放大器
文件页数/大小: 31 页 / 1184 K
品牌: TI [ TEXAS INSTRUMENTS ]
 浏览型号LM3886T/NOPB的Datasheet PDF文件第15页浏览型号LM3886T/NOPB的Datasheet PDF文件第16页浏览型号LM3886T/NOPB的Datasheet PDF文件第17页浏览型号LM3886T/NOPB的Datasheet PDF文件第18页浏览型号LM3886T/NOPB的Datasheet PDF文件第20页浏览型号LM3886T/NOPB的Datasheet PDF文件第21页浏览型号LM3886T/NOPB的Datasheet PDF文件第22页浏览型号LM3886T/NOPB的Datasheet PDF文件第23页  
LM3886  
www.ti.com  
SNAS091C MAY 1999REVISED MARCH 2013  
Referring to the figure below, it is seen that the thermal resistance from the die (junction) to the outside air  
(ambient) is a combination of three thermal resistances, two of which are known, θJC and θCS. Since convection  
heat flow (power dissipation) is analogous to current flow, thermal resistance is analogous to electrical  
resistance, and temperature drops are analogous to voltage drops, the power dissipation out of the LM3886 is  
equal to the following:  
PDMAX = (TJmax TAmb)/θJA  
where  
θJA = θJC + θCS + θSA  
(5)  
Figure 50.  
But since we know PDMAX, θJC, and θSC for the application and we are looking for θSA, we have the following:  
θSA = [(TJmax TAmb) PDMAX (θJC + θCS)]/PDMAX  
(6)  
Again it must be noted that the value of θSA is dependent upon the system designer's amplifier application and its  
corresponding parameters as described previously. If the ambient temperature that the audio amplifier is to be  
working under is higher than the normal 25°C, then the thermal resistance for the heat sink, given all other things  
are equal, will need to be smaller.  
Equation 2 and Equation 6 are the only equations needed in the determination of the maximum heat sink thermal  
resistance. This is of course given that the system designer knows the required supply voltages to drive his rated  
load at a particular power output level and the parameters provided by the semiconductor manufacturer. These  
parameters are the junction to case thermal resistance, θJC, TJmax = 150°C, and the recommended Thermalloy  
Thermacote thermal compound resistance, θCS  
.
SIGNAL-TO-NOISE RATIO  
In the measurement of the signal-to-noise ratio, misinterpretations of the numbers actually measured are  
common. One amplifier may sound much quieter than another, but due to improper testing techniques, they  
appear equal in measurements. This is often the case when comparing integrated circuit designs to discrete  
amplifier designs. Discrete transistor amps often “run out of gain” at high frequencies and therefore have small  
bandwidths to noise as indicated below.  
Integrated circuits have additional open loop gain allowing additional feedback loop gain in order to lower  
harmonic distortion and improve frequency response. It is this additional bandwidth that can lead to erroneous  
signal-to-noise measurements if not considered during the measurement process. In the typical example above,  
the difference in bandwidth appears small on a log scale but the factor of 10 in bandwidth, (200 kHz to 2 MHz)  
can result in a 10 dB theoretical difference in the signal-to-noise ratio (white noise is proportional to the square  
root of the bandwidth in a system).  
In comparing audio amplifiers it is necessary to measure the magnitude of noise in the audible bandwidth by  
using a “weighting” filter (see Note below). A “weighting” filter alters the frequency response in order to  
compensate for the average human ear's sensitivity to the frequency spectra. The weighting filters at the same  
time provide the bandwidth limiting as discussed in the previous paragraph.  
Copyright © 1999–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LM3886  
 
 复制成功!