欢迎访问ic37.com |
会员登录 免费注册
发布采购

71M6531D_10 参数 Datasheet PDF下载

71M6531D_10图片预览
型号: 71M6531D_10
PDF下载: 下载PDF文件 查看货源
内容描述: 电能计量IC [Energy Meter IC]
分类和应用:
文件页数/大小: 120 页 / 1966 K
品牌: TERIDIAN [ TERIDIAN SEMICONDUCTOR CORPORATION ]
 浏览型号71M6531D_10的Datasheet PDF文件第86页浏览型号71M6531D_10的Datasheet PDF文件第87页浏览型号71M6531D_10的Datasheet PDF文件第88页浏览型号71M6531D_10的Datasheet PDF文件第89页浏览型号71M6531D_10的Datasheet PDF文件第91页浏览型号71M6531D_10的Datasheet PDF文件第92页浏览型号71M6531D_10的Datasheet PDF文件第93页浏览型号71M6531D_10的Datasheet PDF文件第94页  
Data Sheet 71M6531D/F-71M6532D/F  
Table 57: CESTATUS (CE RAM 0x80) Bit Definitions  
FDS 6531/6532 005  
CESTATUS [bit]  
Name  
Description  
31:29  
Not Used  
These unused bits will always be zero.  
F0 is a square wave at the exact fundamental frequency for the  
phase selected with the FREQSELn bits in CECONFIG.  
28  
27  
F0  
Reserved  
Normally zero. Becomes one when VB remains below SAG_THR for  
SAG_CNT samples. Will not return to zero until VB rises above  
SAG_THR.  
26  
SAG_B  
Normally zero. Becomes one when VA remains below SAG_THR for  
SAG_CNT samples. Will not return to zero until VA rises above  
SAG_THR.  
25  
SAG_A  
24:0  
Not Used  
These unused bits will always be zero.  
The CE is initialized and its functions are controlled by the MPU using CECONFIG. This register contains  
in packed form SAG_CNT, FREQSEL, EXT_PULSE, I0_SHUNT, I1_SHUNT, PULSE_SLOW and PULSE_FAST.  
The CECONFIG bit definitions are given in Table 58.  
CE Address  
Name  
Data  
Description  
0x20  
CECONFIG  
0x5020  
See description of the CECONFIG bits in Table 58.  
IA_SHUNT and/or IB_SHUNT can configure their respective current inputs to accept shunt resistor sensors.  
In this case the CE provides an additional gain of 8 to the selected current input. WRATE may need to be  
adjusted based on the values of IA_SHUNT and IB_SHUNT. Whenever IA_SHUNT or IB_SHUNT are set to  
1, In_8 (in the equation for Kh) is assigned a value of 8.  
The CE pulse generator can be controlled by either the MPU (external) or CE (internal) variables. Control  
is by the MPU if EXT_PULSE = 1. In this case, the MPU controls the pulse rate by placing values into  
APULSEW, APULSER, APULSE2 and APULSE3. By setting EXT_PULSE = 0, the CE controls the pulse rate  
based on W0SUM_X and VAR0SUM_X (EQU[2:0] = 0) or WSUM_X (EQU[2:0] = 2).  
If EXT_PULSE = 0 and EQU[2:0] = 2, the pulse inputs are W0SUM_X + W1SUM_X and VAR0SUM_X +  
VAR1SUM_X. In this case, creep cannot be controlled since creep is an MPU function.  
If EXT_PULSE = 0 and EQU[2:0] = 0, the pulse inputs are W0SUM_X if I0SQSUM_X > I1SQSUM_X and  
W1SUM_X, if I1SQSUM_X > I0SQSUM_X.  
The 71M6531 Demo Code creep function halts both internal and external pulse generation.  
The EXT_TEMP bit controls the temperature compensation mode:  
When EXT_TEMP = 0 (internal compensation), the CE will control the gain using GAIN_ADJ (see Table 60)  
based on PPMC, PPMC2 and TEMP_X, the difference between die temperature and the reference /  
calibration temperature TEMP_NOM. Since PPMC and PPMC2 reflect the typical behavior of the  
reference voltage over temperature, the internal temperature compensation eliminates the effects of  
temperature-related errors of VREF only.  
When EXT_TEMP = 1 (external compensation), the MPU is allowed to control the CE gain using  
GAIN_ADJ, based on any algorithm implemented in MPU code.  
The FREQSEL1 and FREQSEL0 bits select the phase used to control the CE-internal PLL. CE accuracy  
depends on the channel selected by the FREQSEL1 and FREQSEL0 bits receiving a clean voltage signal.  
90  
© 2005-2010 TERIDIAN Semiconductor Corporation  
v1.3  
 
 复制成功!