欢迎访问ic37.com |
会员登录 免费注册
发布采购

SI3225-FQ 参数 Datasheet PDF下载

SI3225-FQ图片预览
型号: SI3225-FQ
PDF下载: 下载PDF文件 查看货源
内容描述: 双PROSLIC®可编程CMOS SLIC / CODEC [DUAL PROSLIC® PROGRAMMABLE CMOS SLIC/CODEC]
分类和应用: 电池电信集成电路
文件页数/大小: 108 页 / 1519 K
品牌: SILICONIMAGE [ Silicon image ]
 浏览型号SI3225-FQ的Datasheet PDF文件第33页浏览型号SI3225-FQ的Datasheet PDF文件第34页浏览型号SI3225-FQ的Datasheet PDF文件第35页浏览型号SI3225-FQ的Datasheet PDF文件第36页浏览型号SI3225-FQ的Datasheet PDF文件第38页浏览型号SI3225-FQ的Datasheet PDF文件第39页浏览型号SI3225-FQ的Datasheet PDF文件第40页浏览型号SI3225-FQ的Datasheet PDF文件第41页  
Si3220/Si3225  
Transistor Power Equations  
(Using Discrete Transistors)  
Power Filter and Alarms  
The power calculated during each A/D sample period  
When using the Si3220 or Si3225 along with discrete must be filtered before being compared to a user-  
bipolar transistors, it is possible to control the total programmable maximum power threshold. A simple  
power of the solution by individually regulating the digital low-pass filter is used to approximate the  
power in each discrete transistor. Figure 18 illustrates transient thermal behavior of the package, with the  
the basic transistor-based linefeed circuit for one output of the filter representing the effective peak power  
channel. The power dissipation of each external within the package or, equivalently, the peak junction  
transistor is estimated based on the A/D sample values. temperature.  
The approximate power equations for each external  
BJT are as follows:  
For Q1, Q2, Q3, and Q4 in SOT23 and Q5 and Q6 in  
SOT223 packages, the settings for thermal low-pass  
filter poles and power threshold settings are (for an  
ambient temperature of 70 °C) calculated as follows: If  
P
P
P
P
P
P
V  
V  
V  
V  
V  
V  
x I (|V | + 0.75 V) x (I  
)
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
CE1  
CE2  
CE3  
CE4  
CE5  
CE6  
Q1  
TIP  
Q1  
x I (|V  
| + 0.75 V) x (I  
)
)
)
Q2  
RING  
Q2  
the thermal time constant of the package is τ  
, the  
thermal  
x I (|V | – R7 x I ) x (I  
Q3  
BAT  
Q5  
Q3  
decimal values of RAM locations PLPF12, PLPF34, and  
PLPF56 are given by rounding to the next integer the  
value given by the following equation:  
x I (|V | – R6 x I ) x (I  
Q4  
BAT  
Q6  
Q4  
x I (|V | – |V  
| – R7 x I ) x (I  
)
Q5  
BAT  
RING  
Q5  
Q5  
x I (|V | – |V | – R6 x I ) x (I )  
Q6  
BAT  
TIP  
Q6  
Q6  
4096  
3
------------------------------------  
PLPFxx (decimal value) =  
× 2  
The maximum power threshold for each device is  
software-programmable and should be set based on the  
characteristics of the transistor package, PCB design,  
and available airflow. If the peak power exceeds the  
programmed threshold for any device, the power-alarm  
bit is set for that device. Each external bipolar has its  
own register bit (PQ1S–PQ6S bits of the IRQVEC3  
register), which goes high on a rising edge of the  
comparator output and remains high until the user  
clears it. Each transistor power alarm bit is also  
maskable by setting the PQ1E–PQ6E bits in the  
IRQEN3 register.  
800 × τthermal  
Where 4096 is the maximum value of the 12-bit plus  
sign RAM locations PLPF12, PLPF34, and PLPF56,  
and 800 is the power calculation clock rate in Hz. The  
equation is an excellent approximation of the exact  
equation for τ  
= 1.25 ms … 5.12 s. With the  
thermal  
above equations in mind, example values of the RAM  
locations, PTH12, PTH34, PTH56, PLPF12, PLPF34,  
and PLPF56 are as follows:  
PTH12 = power threshold for Q1, Q2 = 0.3 W (0x25A)  
PTH34 = power threshold for Q3, Q4 = 0.22 W  
(0x1B5E)  
Si3200 Power Calculation  
PTH56 = power threshold for Q5, Q6 = 1 W (0x7D8)  
When using the Si3200, it is also possible to detect the  
thermal conditions of the linefeed circuit by calculating  
the total power dissipated within the Si3200. This case  
is similar to the transistor power equations case, with  
the exception that the total power from all transistor  
devices is dissipated within the same package  
enclosure, and the total power result is placed in the  
PSUM RAM location. The power calculation is derived  
using the following set of equations:  
PLPF12 = Q1/Q2 thermal LPF pole = 0x0012  
(for SOT–89 package)  
PLPF34 = Q3/Q4 thermal LPF pole = 0x008C  
(for SOT–23 package)  
PLPF56 = Q5/Q6 thermal LPF pole = 0x000E  
(for SOT–223 package)  
In the case where the Si3200 is used, thermal filtering  
needs to be performed only on the total power reflected  
in the PSUM RAM location. When the filter output  
exceeds the total power threshold, an interrupt is  
issued. The PTH12 RAM location is used to preset the  
total power threshold for the Si3200, and the PLPF12  
RAM location is used to preset the thermal low-pass  
filter pole.  
P
P
P
P
P
P
(|V | + 0.75 V) x I  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
TIP Q1  
(|V  
(|V  
| + 0.75 V) x I  
Q2  
|+ 0.75 V) x I  
RING  
BAT  
Q3  
(|V | + 0.75 V) x I  
BAT  
Q4  
(|V | – |V  
|) x I  
BAT  
RING  
Q5  
(|V | – |V |) x I  
BAT  
TIP  
Q6  
PSUM = total dissipated power = P  
Q4  
+ P  
+ P  
+
Q3  
Q1  
Q2  
P
+ P + P  
Q5 Q6  
Note: The Si3200 THERM pin must be connected to the  
THERM a/b pin of the Si3220/Si3225 in order for the  
Si3200 power calculation method to work correctly.  
Rev. 1.0  
37  
 复制成功!