欢迎访问ic37.com |
会员登录 免费注册
发布采购

SI1002-C-GM 参数 Datasheet PDF下载

SI1002-C-GM图片预览
型号: SI1002-C-GM
PDF下载: 下载PDF文件 查看货源
内容描述: 超低功耗, 64/32 KB , 10位ADC, MCU ,集成了240-960兆赫的EZRadioPRO收发器 [Ultra Low Power, 64/32 kB, 10-Bit ADC MCU with Integrated 240-960 MHz EZRadioPRO Transceiver]
分类和应用:
文件页数/大小: 376 页 / 2369 K
品牌: SILICON [ SILICON ]
 浏览型号SI1002-C-GM的Datasheet PDF文件第293页浏览型号SI1002-C-GM的Datasheet PDF文件第294页浏览型号SI1002-C-GM的Datasheet PDF文件第295页浏览型号SI1002-C-GM的Datasheet PDF文件第296页浏览型号SI1002-C-GM的Datasheet PDF文件第298页浏览型号SI1002-C-GM的Datasheet PDF文件第299页浏览型号SI1002-C-GM的Datasheet PDF文件第300页浏览型号SI1002-C-GM的Datasheet PDF文件第301页  
Si1000/1/2/3/4/5  
24.4.3. Hardware Slave Address Recognition  
The SMBus hardware has the capability to automatically recognize incoming slave addresses and send an  
ACK without software intervention. Automatic slave address recognition is enabled by setting the EHACK  
bit in register SMB0ADM to 1. This will enable both automatic slave address recognition and automatic  
hardware ACK generation for received bytes (as a master or slave). More detail on automatic hardware  
ACK generation can be found in Section 24.4.2.2.  
The registers used to define which address(es) are recognized by the hardware are the SMBus Slave  
Address register (SFR Definition 24.3) and the SMBus Slave Address Mask register (SFR Definition 24.4).  
A single address or range of addresses (including the General Call Address 0x00) can be specified using  
these two registers. The most-significant seven bits of the two registers are used to define which  
addresses will be ACKed. A 1 in bit positions of the slave address mask SLVM[6:0] enable a comparison  
between the received slave address and the hardware’s slave address SLV[6:0] for those bits. A 0 in a bit  
of the slave address mask means that bit will be treated as a “don’t care” for comparison purposes. In this  
case, either a 1 or a 0 value are acceptable on the incoming slave address. Additionally, if the GC bit in  
register SMB0ADR is set to 1, hardware will recognize the General Call Address (0x00). Table 24.4 shows  
some example parameter settings and the slave addresses that will be recognized by hardware under  
those conditions. Refer to “Limitations for Hardware Acknowledge Feature” on page 299 when using hard-  
ware slave address recognition.  
Table 24.4. Hardware Address Recognition Examples (EHACK = 1)  
Hardware Slave Address Slave Address Mask  
GC bit Slave Addresses Recognized by  
Hardware  
SLV[6:0]  
SLVM[6:0]  
0x34  
0x34  
0x34  
0x34  
0x70  
0x7F  
0x7F  
0x7E  
0x7E  
0x73  
0
1
0
1
0
0x34  
0x34, 0x00 (General Call)  
0x34, 0x35  
0x34, 0x35, 0x00 (General Call)  
0x70, 0x74, 0x78, 0x7C  
Rev. 1.0  
297