STANDARD PRODUCT
PM4328 TECT3
DATASHEET
PMC-2011596
ISSUE 1
HIGH DENSITY T1/E1 FRAMER
AND M13 MULTIPLEXER
1. Wait until data is available to be transmitted, then go to step 2.
2. Read the TDPR Interrupt Status register.
3. If FULL=1, then the TDPR FIFO is full and no further bytes can be written.
Continue polling the TDPR Interrupt Status register until either FULL=0 or
BLFILL=1. Then, go to either step 4 or 5 depending on implementation
preference.
4. If BLFILL=1, then the TDPR FIFO depth is below its lower threshold limit.
Write the data into the TDPR Transmit Data register. Go to step 6.
5. If FULL=0, then the TDPR FIFO has room for at least 1 more byte to be
written. Write the data into the TDPR Transmit Data register. Go to step 6.
6. If more data bytes are to be transmitted in the packet, then go to step 2.
If all bytes in the packet have been sent, then set the EOM bit in the TDPR
Configuration register to logic 1. Go to step 1.
12.5 Using the Internal Data Link Receiver
It is important to note that the access rate to the RDLC registers is limited by the
rate of the internal high-speed system clock which is either the DS3, DS1 or E1
system clock. Consecutive accesses to the RDLC Status and RDLC Data
registers should be accessed at a rate no faster than 1/10 that of the selected
RDLC high-speed system clock. This time is used by the high-speed system
clock to sample the event and update the FIFO status. Instantaneous variations
in the high-speed reference clock frequencies (e.g. jitter in the receive line clock)
must be considered when determining the procedure used to read RDLC
registers.
On power up of the system, the RDLC should be disabled by setting the EN bit in
the Configuration Register to logic 0 (default state). The RDLC Interrupt Control
register should then be initialized to enable the INTB output and to select the
FIFO buffer fill level at which an interrupt will be generated. If the INTE bit is not
set to logic 1, the RDLC Status register must be continuously polled to check the
interrupt status (INTR) bit.
After the RDLC Interrupt Control register has been written, the RDLC can be
enabled at any time by setting the EN bit in the RDLC Configuration register to
logic 1. When the RDLC is enabled, it will assume the link status is idle (all
ones) and immediately begin searching for flags. When the first flag is found, an
interrupt will be generated, and a dummy byte will be written into the FIFO buffer.
This is done to provide alignment of link up status with the data read from the
PROPRIETARY AND CONFIDENTIAL
144