欢迎访问ic37.com |
会员登录 免费注册
发布采购

P87C552SBAA 参数 Datasheet PDF下载

P87C552SBAA图片预览
型号: P87C552SBAA
PDF下载: 下载PDF文件 查看货源
内容描述: 80C51的8位微控制器8K / 256 OTP , 8通道10位A / D , I2C , PWM ,捕获/比较,高I / O,低电压2.7V.5.5V ,低功耗 [80C51 8-bit microcontroller 8K/256 OTP, 8 channel 10 bit A/D, I2C, PWM, capture/compare, high I/O, low voltage 2.7V.5.5V, low power]
分类和应用: 微控制器和处理器外围集成电路可编程只读存储器时钟
文件页数/大小: 74 页 / 370 K
品牌: NXP [ NXP ]
 浏览型号P87C552SBAA的Datasheet PDF文件第59页浏览型号P87C552SBAA的Datasheet PDF文件第60页浏览型号P87C552SBAA的Datasheet PDF文件第61页浏览型号P87C552SBAA的Datasheet PDF文件第62页浏览型号P87C552SBAA的Datasheet PDF文件第64页浏览型号P87C552SBAA的Datasheet PDF文件第65页浏览型号P87C552SBAA的Datasheet PDF文件第66页浏览型号P87C552SBAA的Datasheet PDF文件第67页  
Philips Semiconductors  
Preliminary specification  
80C51 8-bit microcontroller  
8K/256 OTP, 8 channel 10 bit A/D, I2C, PWM,  
capture/compare, high I/O, low voltage (2.7V–5.5V), low power  
P87C552  
DC ELECTRICAL CHARACTERISTICS (Continued)  
TEST  
LIMITS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNIT  
Analog Inputs (Continued)  
AV  
AV  
Analog input voltage  
Reference voltage:  
AV –0.2  
AV +0.2  
V
IN  
SS  
DD  
REF  
AV  
AV  
AV –0.2  
V
V
REF–  
REF+  
SS  
AV +0.2  
DD  
R
C
Resistance between AV  
and AV  
REF–  
10  
50  
15  
kΩ  
pF  
REF  
REF+  
Analog input capacitance  
Sampling time (10 bit mode)  
Sampling time (8 bit mode)  
IA  
t
t
t
t
8t  
µs  
ADS  
ADS8  
ADC  
ADC8  
CY  
CY  
5t  
µs  
Conversion time (including sampling time, 10 bit mode)  
Conversion time (including sampling time, 8 bit mode)  
50t  
24t  
µs  
CY  
µs  
CY  
10, 11, 12  
DL  
Differential non-linearity  
±1  
LSB  
LSB  
LSB  
LSB  
LSB  
%
e
10, 13  
IL  
IL  
Integral non-linearity  
(10 bit mode)  
±2  
±1  
e
Integral non-linearity (8 bit mode)  
e8  
10, 14  
OS  
OS  
Offset error  
(10 bit mode)  
±2  
e
Offset error (8 bit mode)  
±1  
e8  
10, 15  
G
Gain error  
±0.4  
±3  
e
10, 16  
A
e
Absolute voltage error  
LSB  
LSB  
dB  
M
CTC  
Channel to channel matching  
Crosstalk between inputs of port 5  
±1  
17, 18  
C
0–100kHz  
–60  
t
NOTES FOR DC ELECTRICAL CHARACTERISTICS:  
1. See Figures 57 through 60 for I test conditions, and Figure 56. Active mode: I (max) = (0.9 x FREQ. + 1.1) mA;  
DD  
DD  
Idle Mode: I (max) = (0.18 x FREQ. + 1.01) mA.  
ID  
2. The operating supply current is measured with all output pins disconnected; XTAL1 driven with t = t = 10ns; V = V + 0.5V;  
r
f
IL  
SS  
V
IH  
= V – 0.5V; XTAL2 not connected; EA = RST = Port 0 = EW = V ; STADC = V  
.
DD  
DD  
SS  
3. The idle mode supply current is measured with all output pins disconnected; XTAL1 driven with t = t = 10ns; V = V + 0.5V;  
r
f
IL  
SS  
V
IH  
= V – 0.5V; XTAL2 not connected; Port 0 = EW = V ; EA = RST = STADC = V  
.
DD  
DD  
SS  
4. The power-down current is measured with all output pins disconnected; XTAL2 not connected; Port 0 = EW = V  
;
DD  
EA = RST = STADC = XTAL1 = V  
.
SS  
2
5. The input threshold voltage of P1.6 and P1.7 (SIO1) meets the I C specification, so an input voltage below 1.5V will be recognized as a logic  
0 while an input voltage above 3.0V will be recognized as a logic 1.  
6. Pins of ports 1 (except P1.6, P1.7), 2, 3, and 4 source a transition current when they are being externally driven from 1 to 0. The transition  
current reaches its maximum value when V is approximately 2V.  
IN  
7. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the V s of ALE and ports 1 and 3. The noise is due  
OL  
to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the  
worst cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases, it may be desirable to qualify  
ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. I can exceed these conditions provided that no  
OL  
single output sinks more than 5mA and no more than two outputs exceed the test conditions.  
8. Capacitive loading on ports 0 and 2 may cause the V on ALE and PSEN to momentarily fall below the 0.9V specification when the  
OH  
DD  
address bits are stabilizing.  
9. The following condition must not be exceeded: V – 0.2V < AV < V + 0.2V.  
DD  
DD  
DD  
10.Conditions: AV  
= 0V; AV = 5.0V. Measurement by continuous conversion of AV = –20mV to 5.12V in steps of 0.5mV, derivating  
REF–  
DD  
IN  
parameters from collected conversion results of ADC. AV  
= 4.977V. ADC is monotonic with no missing codes.  
REF+  
11. The differential non-linearity (DL ) is the difference between the actual step width and the ideal step width. (See Figure 47.)  
e
12.The ADC is monotonic; there are no missing codes.  
13.The integral non-linearity (IL ) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
e
appropriate adjustment of gain and offset error. (See Figure 47.)  
14.The offset error (OS ) is the absolute difference between the straight line which fits the actual transfer curve, and a straight line which fits the  
e
ideal transfer curve. (See Figure 47.)  
15.The gain error (G ) is the relative difference in percent between the straight line fitting the actual transfer curve (after removing offset error),  
e
and the straight line which fits the ideal transfer curve. Gain error is constant at every point on the transfer curve. (See Figure 47.)  
16.The absolute voltage error (A ) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated  
e
ADC and the ideal transfer curve.  
17.This should be considered when both analog and digital signals are simultaneously input to port 5.  
18.This parameter is guaranteed by design and characterized, but is not production tested.  
63  
1999 Mar 30  
 复制成功!