欢迎访问ic37.com |
会员登录 免费注册
发布采购

AU5790 参数 Datasheet PDF下载

AU5790图片预览
型号: AU5790
PDF下载: 下载PDF文件 查看货源
内容描述: 单线CAN收发器 [Single wire CAN transceiver]
分类和应用:
文件页数/大小: 20 页 / 121 K
品牌: NXP [ NXP ]
 浏览型号AU5790的Datasheet PDF文件第12页浏览型号AU5790的Datasheet PDF文件第13页浏览型号AU5790的Datasheet PDF文件第14页浏览型号AU5790的Datasheet PDF文件第15页浏览型号AU5790的Datasheet PDF文件第17页浏览型号AU5790的Datasheet PDF文件第18页浏览型号AU5790的Datasheet PDF文件第19页浏览型号AU5790的Datasheet PDF文件第20页  
Philips Semiconductors  
Product data  
Single wire CAN transceiver  
AU5790  
Power Dissipation  
I
= V  
/R  
CANHN LOAD  
LOAD  
Power dissipation of an IC is the major factor determining junction  
temperature. AU5790 power dissipation in active and passive states  
are different. The average power dissipation is:  
I
= I  
+ I  
LOAD INT  
BATN  
where:  
I
is an active state current dissipated within the IC in  
INT  
normal mode.  
P
tot  
= P *Dy + P  
* (1-Dy)  
INT  
PNINT  
I
will decrease slightly when the node number  
INT  
where:  
P
P
P
is total dissipation power;  
tot  
decreases. To simplify this analysis, we will assume I  
fixed.  
is  
INT  
is dissipation power in an active state;  
INT  
is dissipation power in a passive state;  
I
= I  
(32 nodes) – I  
(32 nodes)  
LOAD  
PNINT  
INT  
BATN  
Dy is duty cycle, which is the percentage of time that TxD  
is in an active state during any given time duration.  
I
(32 nodes) may be found in the DC Characteristics  
BATN  
table.  
At passive state there is no current going into the load. So  
all of the supply current is dissipated inside the IC.  
A power dissipation example follows. The assumed values  
are chosen from specification and typical applications.  
P
PNINT  
= V  
* I  
BAT BATPN  
Assumptions:  
where:  
V
BAT  
is the battery voltage;  
V
BAT  
= 13.4 V  
R = 9.1 kΩ  
32 nodes  
T
I
is the passive state supply current in normal mode.  
BATPN  
In an active state, part of the supply current goes to the  
load, and only part of the supply current dissipates inside  
the IC, causing an incremental increase in junction  
temperature.  
I
= 2 mA  
BATPN  
I
(32 nodes) = 35 mA  
BATN  
V
= 4.55 V  
CANHN  
Duty cycle = 50%  
P
INT  
= P  
– P  
LOADN  
Computations:  
BATAN  
where:  
where:  
P
is active state battery supply power in normal  
R
= 9.1 k/ 32 = 284.4 Ω  
BATAN  
LOAD  
mode;  
P
I
P
= 13.4 V × 2 mA = 26.8 mW  
= 4.55 V / 284.4 = 16mA  
= 4.55 V × 16 mA = 72.8 mW  
= 35 mA - 16 mA = 19 mA  
= 13.4 V × 35 mA = 469 mW  
PNINT  
LOAD  
P
BATAN  
= V  
* I  
BAT BATAN  
LOADN  
P
is load power consumption in normal mode.  
I
LOADN  
INT  
P
BATAN  
P
= V  
* I  
CANHN LOADN  
LOADN  
P
= 469 mW - 72.8 mW = 396.2 mW  
INT  
P
tot  
= 396.2 mW × 50% + 26.8 mW × (1-50%) = 211.5 mW  
I
is active state supply current in normal mode;  
BATAN  
Additional examples with various node counts are shown in Table 4.  
V
is bus output voltage in normal mode;  
CANHN  
I
is current going through load in normal mode.  
LOADN  
Table 4. Representative Power Dissipation Analyses  
R
I
P
PNINT  
V
I
I
P
INT  
P
tot  
LOAD  
BATPN  
CANHN  
LOAD  
BATN  
Nodes  
2
()  
V
BAT  
(V)  
(mA)  
(mW)  
26.8  
26.8  
26.8  
26.8  
53  
(V)  
(mA)  
(mA)  
I
(mA)  
(mW)  
263.5  
298.9  
343.1  
396.2  
525.5  
613.3  
723  
Dcycle  
0.5  
(mW)  
145.1  
162.8  
184.9  
211.5  
289.2  
333.1  
388  
INT  
4550  
910  
13.4  
13.4  
13.4  
13.4  
26.5  
26.5  
26.5  
26.5  
2
2
2
2
2
2
2
2
4.55  
4.55  
4.55  
4.55  
4.55  
4.55  
4.55  
4.55  
1
20  
19  
10  
20  
32  
2
5
24  
19  
19  
19  
19  
19  
19  
19  
0.5  
455  
10  
16  
1
29  
0.5  
284.4  
4550  
910  
35  
0.5  
20  
0.5  
10  
20  
32  
53  
5
24  
0.5  
455  
53  
10  
16  
29  
0.5  
284.4  
53  
35  
854.7  
0.5  
453.8  
By knowing the maximum power dissipation, and the operation ambient temperature, the required thermal resistance without tripping the  
thermal protection can be calculated, as shown in Figure 7. Then from Figure 5 or 6, a suitable PCB can be selected.  
16  
2001 May 18  
 复制成功!