PIC18F2480/2580/4480/4580
1.1.2
MULTIPLE OSCILLATOR OPTIONS
AND FEATURES
1.0
DEVICE OVERVIEW
This document contains device specific information for
the following devices:
All of the devices in the PIC18F2480/2580/4480/4580
family offer ten different oscillator options, allowing
users a wide range of choices in developing application
hardware. These include:
• PIC18F2480
• PIC18F2580
• PIC18F4480
• PIC18F4580
• Four Crystal modes, using crystals or ceramic
resonators
This family of devices offers the advantages of all
PIC18 microcontrollers – namely, high computational
performance at an economical price – with the addition
of high-endurance, Enhanced Flash program
memory. In addition to these features, the
PIC18F2480/2580/4480/4580 family introduces design
enhancements that make these microcontrollers a
• Two External Clock modes, offering the option of
using two pins (oscillator input and a divide-by-4
clock output) or one pin (oscillator input, with the
second pin reassigned as general I/O)
• Two External RC Oscillator modes with the same
pin options as the External Clock modes
• An internal oscillator block which provides an
8 MHz clock (±2% accuracy) and an INTRC
source (approximately 31 kHz, stable over
temperature and VDD), as well as a range of
6 user-selectable clock frequencies, between
125 kHz to 4 MHz, for a total of 8 clock
logical
choice
for
many
high-performance,
power-sensitive applications.
1.1
New Core Features
nanoWatt TECHNOLOGY
1.1.1
frequencies. This option frees the two oscillator
pins for use as additional general purpose I/O.
All of the devices in the PIC18F2480/2580/4480/4580
family incorporate a range of features that can signifi-
cantly reduce power consumption during operation.
Key items include:
• A Phase Lock Loop (PLL) frequency multiplier,
available to both the high-speed crystal and
internal oscillator modes, which allows clock
speeds of up to 40 MHz. Used with the internal
oscillator, the PLL gives users a complete
selection of clock speeds, from 31 kHz to
32 MHz – all without using an external crystal or
clock circuit.
• Alternate Run Modes: By clocking the controller
from the Timer1 source or the internal oscillator
block, power consumption during code execution
can be reduced by as much as 90%.
• Multiple Idle Modes: The controller can also run
with its CPU core disabled but the peripherals still
active. In these states, power consumption can be
reduced even further, to as little as 4% of normal
operation requirements.
Besides its availability as a clock source, the internal
oscillator block provides a stable reference source that
gives the family additional features for robust
operation:
• On-the-Fly Mode Switching: The
power-managed modes are invoked by user code
during operation, allowing the user to incorporate
power-saving ideas into their application’s
software design.
• Fail-Safe Clock Monitor: This option constantly
monitors the main clock source against a refer-
ence signal provided by the internal oscillator. If a
clock failure occurs, the controller is switched to
the internal oscillator block, allowing for continued
low-speed operation or a safe application
shutdown.
• Lower Consumption in Key Modules: The
power requirements for both Timer1 and the
Watchdog Timer have been reduced by up to
80%, with typical values of 1.1 and 2.1 μA,
respectively.
• Two-Speed Start-up: This option allows the
internal oscillator to serve as the clock source
from Power-on Reset, or wake-up from Sleep
mode, until the primary clock source is available.
• Extended Instruction Set: In addition to the
standard 75 instructions of the PIC18 instruction
set, PIC18F2480/2580/4480/4580 devices also
provide an optional extension to the core CPU
functionality. The added features include eight
additional instructions that augment indirect and
indexed addressing operations and the
implementation of Indexed Literal Offset
Addressing mode for many of the standard PIC18
instructions.
© 2009 Microchip Technology Inc.
DS39637D-page 9