PIC18FXX20
External MCLR Reset will cause a device RESET. All
other events are considered a continuation of program
execution and will cause a “wake-up”. The TO and PD
bits in the RCON register can be used to determine the
cause of the device RESET. The PD bit, which is set on
power-up, is cleared when SLEEP is invoked. The TO
bit is cleared if a WDT time-out occurred (and caused
wake-up).
When the SLEEPinstruction is being executed, the next
instruction (PC + 2) is pre-fetched. For the device to
wake-up through an interrupt event, the corresponding
interrupt enable bit must be set (enabled). Wake-up is
regardless of the state of the GIE bit. If the GIE bit is
clear (disabled), the device continues execution at the
instruction after the SLEEPinstruction. If the GIE bit is
set (enabled), the device executes the instruction after
the SLEEP instruction and then branches to the inter-
rupt address. In cases where the execution of the
instruction following SLEEP is not desirable, the user
should have a NOPafter the SLEEPinstruction.
23.3 Power-down Mode (SLEEP)
Power-down mode is entered by executing a SLEEP
instruction.
If enabled, the Watchdog Timer will be cleared, but
keeps running, the PD bit (RCON<3>) is cleared, the
TO (RCON<4>) bit is set, and the oscillator driver is
turned off. The I/O ports maintain the status they had
before the SLEEP instruction was executed (driving
high, low, or hi-impedance).
For lowest current consumption in this mode, place all
I/O pins at either VDD or VSS, ensure no external cir-
cuitry is drawing current from the I/O pin, power-down
the A/D and disable external clocks. Pull all I/O pins
that are hi-impedance inputs, high or low externally, to
avoid switching currents caused by floating inputs. The
T0CKI input should also be at VDD or VSS for lowest
current consumption. The contribution from on-chip
pull-ups on PORTB should be considered.
The MCLR pin must be at a logic high level (VIHMC).
23.3.2
WAKE-UP USING INTERRUPTS
23.3.1
WAKE-UP FROM SLEEP
When global interrupts are disabled (GIE cleared) and
any interrupt source has both its interrupt enable bit
and interrupt flag bit set, one of the following will occur:
• If an interrupt condition (interrupt flag bit and inter-
rupt enable bits are set) occurs before the execu-
tion of a SLEEPinstruction, the SLEEPinstruction
will complete as a NOP. Therefore, the WDT and
WDT postscaler will not be cleared, the TO bit will
not be set and PD bits will not be cleared.
• If the interrupt condition occurs during or after
the execution of a SLEEPinstruction, the device
will immediately wake-up from SLEEP. The
SLEEPinstruction will be completely executed
before the wake-up. Therefore, the WDT and
WDT postscaler will be cleared, the TO bit will be
set and the PD bit will be cleared.
Even if the flag bits were checked before executing a
SLEEP instruction, it may be possible for flag bits to
become set before the SLEEPinstruction completes. To
determine whether a SLEEPinstruction executed, test
the PD bit. If the PD bit is set, the SLEEP instruction
was executed as a NOP.
The device can wake-up from SLEEP through one of
the following events:
1. External RESET input on MCLR pin.
2. Watchdog Timer Wake-up (if WDT was
enabled).
3. Interrupt from INT pin, RB port change or a
peripheral interrupt.
The following peripheral interrupts can wake the device
from SLEEP:
1. PSP read or write.
2. TMR1 interrupt. Timer1 must be operating as an
asynchronous counter.
3. TMR3 interrupt. Timer3 must be operating as an
asynchronous counter.
4. CCP Capture mode interrupt.
5. Special event trigger (Timer1 in Asynchronous
mode using an external clock).
6. MSSP (START/STOP) bit detect interrupt.
7. MSSP transmit or receive in Slave mode
(SPI/I2C).
8. USART RX or TX (Synchronous Slave mode).
9. A/D conversion (when A/D clock source is RC).
10. EEPROM write operation complete.
11. LVD interrupt.
To ensure that the WDT is cleared, a CLRWDTinstruction
should be executed before a SLEEPinstruction.
Other peripherals cannot generate interrupts, since
during SLEEP, no on-chip clocks are present.
DS39609A-page 252
Advance Information
2003 Microchip Technology Inc.