欢迎访问ic37.com |
会员登录 免费注册
发布采购

MAX1653ESE 参数 Datasheet PDF下载

MAX1653ESE图片预览
型号: MAX1653ESE
PDF下载: 下载PDF文件 查看货源
内容描述: 高效率, PWM ,降压型DC- DC控制器,16引脚QSOP [High-Efficiency, PWM, Step-Down DC-DC Controllers in 16-Pin QSOP]
分类和应用: 控制器
文件页数/大小: 28 页 / 266 K
品牌: MAXIM [ MAXIM INTEGRATED PRODUCTS ]
 浏览型号MAX1653ESE的Datasheet PDF文件第20页浏览型号MAX1653ESE的Datasheet PDF文件第21页浏览型号MAX1653ESE的Datasheet PDF文件第22页浏览型号MAX1653ESE的Datasheet PDF文件第23页浏览型号MAX1653ESE的Datasheet PDF文件第25页浏览型号MAX1653ESE的Datasheet PDF文件第26页浏览型号MAX1653ESE的Datasheet PDF文件第27页浏览型号MAX1653ESE的Datasheet PDF文件第28页  
Hig h -Effic ie n c y, P WM, S t e p -Do w n  
DC-DC Co n t ro lle rs in 1 6 -P in QS OP  
the DH gate-driver peak output current (1A typ), and  
20ns is the rise/fall time of the DH driver.  
__________Ap p lic a t io n s In fo rm a t io n  
He a vy-Lo a d Effic ie n c y Co n s id e ra t io n s  
The major efficiency loss mechanisms under loads (in  
the usual order of importance) are:  
2
P(cap) = input capacitor ESR loss = (I  
) x R  
RMS  
ESR  
where I  
is the input ripple current as calculated in the  
RMS  
Input Capacitor Value section of the Design Procedure.  
2
2
P(I R), I R losses  
P(gate), gate-charge losses  
P(diode), diode-conduction losses  
P(tran), transition losses  
P(cap), capacitor ESR losses  
Lig h t -Lo a d Effic ie n c y Co n s id e ra t io n s  
Under light loads, the PWM operates in discontinuous  
mode, where the inductor current discharges to zero at  
some point during the switching cycle. This causes the  
AC component of the inductor current to be high com-  
pared to the load current, which increases core losses  
P(IC), losses due to the operating supply current  
of the IC  
2
and I R losses in the output filter capacitors. Obtain best  
light-load efficiency by using MOSFETs with moderate  
gate-charge levels and by using ferrite, MPP, or other  
low-loss core material. Avoid powdered iron cores; even  
Kool-mu (aluminum alloy) is not as good as ferrite.  
Ind uc tor-c ore los s e s a re fa irly low a t he a vy loa d s  
because the inductors AC current component is small.  
Therefore, they arent accounted for in this analysis.  
Ferrite cores are preferred, especially at 300kHz, but  
powdered cores such as Kool-mu can work well.  
__P C Bo a rd La yo u t Co n s id e ra t io n s  
2–MAX165  
Good PC board layout is required to achieve specified  
noise, efficiency, and stability performance. The PC  
b oa rd la yout a rtis t mus t b e p rovid e d with e xp lic it  
instructions, preferably a pencil sketch of the place-  
ment of power switching components and high-current  
routing. See the evaluation kit PC board layouts in the  
MAX1653, MAX796, and MAX797 EV kit manuals for  
examples. A ground plane is essential for optimum per-  
formance. In most applications, the circuit will be locat-  
ed on a multilayer board, and full use of the four or  
more copper layers is recommended. Use the top layer  
for high-current connections, the bottom layer for quiet  
connections (REF, SS, GND), and the inner layers for  
an uninterrupted ground plane. Use the following step-  
by-step guide.  
Efficiency = P  
= P  
/ P x 100%  
IN  
OUT  
OUT  
2
/ (P  
+ P  
) x 100%  
OUT  
TOTAL  
P
= P(I R) + P(gate) + P(diode) + P(tran) +  
TOTAL  
P(cap) + P(IC)  
2
2
P(I R) = (I  
) x (R  
+ R  
+ R  
)
LOAD  
DC  
DS(ON)  
SENSE  
where R  
is the DC resistance of the coil, R  
is  
DC  
DS(ON)  
the MOSFET on-resistance, and R  
sense resistor value. The R  
c a l MOSFETs for the hig h- a nd low-s id e s witc he s  
because they time-share the inductor current. If the  
MOSFETs arent identical, their losses can be estimat-  
ed by averaging the losses according to duty factor.  
is the current-  
SENSE  
term assumes identi-  
DS(ON)  
P(gate) = gate-driver loss = qG x f x VL  
where VL is the MAX1652 internal logic supply voltage  
(5V), and qG is the sum of the gate-charge values for  
low- and high-side switches. For matched MOSFETs,  
q G is twic e the d a ta s he e t va lue of a n ind ivid ua l  
1) Place the high-power components (C1, C2, Q1, Q2,  
D1, L1, and R1) first, with their grounds adjacent.  
Priority 1: Minimize current-sense resistor trace  
lengths (see Figure 9).  
MOSFET. If V  
is set to less than 4.5V, replace VL in  
OUT  
this equation with V  
improved by connecting VL to an efficient 5V source,  
such as the system +5V supply.  
. In this case, efficiency can be  
BATT  
Priority 2: Minimize ground trace lengths in the  
high-current paths (discussed below).  
Priority 3: Minimize other trace lengths in the high-  
current paths. Use >5mm wide traces.  
C1 to Q1: 10mm max length. D1 anode to  
Q2: 5mm ma x le ng th LX nod e (Q1  
source, Q2 drain, D1 cathode, inductor):  
15mm max length  
P(diode) = diode conduction losses  
= I  
x V  
x t x f  
LOAD  
FWD D  
where t is the diode conduction time (120ns typ) and  
D
V
FWD  
is the forward voltage of the Schottky.  
PD(tran) = transition loss =  
Id e a lly, s urfa c e -mount p owe r c omp one nts a re  
butted up to one another with their ground terminals  
almost touching. These high-current grounds (C1-,  
C2-, source of Q2, anode of D1, and PGND) are  
then connected to each other with a wide filled zone  
VBATT x CRSS  
V
x I  
x f x  
(
——————— + 20ns  
)
BATT LOAD  
I
GATE  
where C  
is the reverse transfer capacitance of the  
high-side MOSFET (a data sheet parameter), I  
RSS  
is  
GATE  
24 ______________________________________________________________________________________  
 复制成功!