欢迎访问ic37.com |
会员登录 免费注册
发布采购

HIP6016CB 参数 Datasheet PDF下载

HIP6016CB图片预览
型号: HIP6016CB
PDF下载: 下载PDF文件 查看货源
内容描述: 先进的PWM和力量线性双控制 [Advanced PWM and Dual Linear Power Control]
分类和应用: 开关光电二极管
文件页数/大小: 14 页 / 134 K
品牌: INTERSIL [ Intersil ]
 浏览型号HIP6016CB的Datasheet PDF文件第6页浏览型号HIP6016CB的Datasheet PDF文件第7页浏览型号HIP6016CB的Datasheet PDF文件第8页浏览型号HIP6016CB的Datasheet PDF文件第9页浏览型号HIP6016CB的Datasheet PDF文件第10页浏览型号HIP6016CB的Datasheet PDF文件第12页浏览型号HIP6016CB的Datasheet PDF文件第13页浏览型号HIP6016CB的Datasheet PDF文件第14页  
HIP6016  
shown in Figure 12. Using the above guidelines should yield a  
V
IN  
compensation gain similar to the curve plotted. The open loop  
error amplifier gain bounds the compensation gain. Check the  
OSC  
DRIVER  
DRIVER  
PWM  
L
O
V
OUT  
compensation gain at F with the capabilities of the error  
COMP  
P2  
V  
OSC  
-
amplifier. The closed loop gain is constructed on the log-log  
graph of Figure 12 by adding the modulator gain (in dB) to the  
compensation gain (in dB). This is equivalent to multiplying  
the modulator transfer function to the compensation transfer  
function and plotting the gain.  
PHASE  
+
C
O
ESR  
(PARASITIC)  
Z
FB  
V
E/A  
Z
-
IN  
+
100  
ERROR  
AMP  
F
F
F
P1  
F
Z1  
Z2  
P2  
REFERENCE  
80  
60  
40  
20  
0
OPEN LOOP  
ERROR AMP GAIN  
DETAILED FEEDBACK COMPENSATION  
Z
FB  
V
OUT  
C2  
R2  
20LOG  
(R /R )  
Z
IN  
2
1
20LOG  
C1  
C3  
R3  
(V /V  
)
IN OSC  
MODULATOR  
GAIN  
COMPENSATION  
GAIN  
R1  
-20  
-40  
-60  
COMP  
CLOSED LOOP  
GAIN  
-
+
F
FB  
LC  
F
ESR  
100K  
FREQUENCY (Hz)  
10  
100  
1K  
10K  
1M  
10M  
HIP6016  
REFERENCE  
FIGURE 12. ASYMPTOTIC BODE PLOT OF CONVERTER GAIN  
FIGURE 11. VOLTAGE-MODE BUCK CONVERTER  
COMPENSATION DESIGN  
The compensation gain uses external impedance networks  
Z
and Z to provide a stable, high bandwidth loop. A stable  
a closed loop transfer function with an acceptable 0dB  
crossing frequency (f ) and adequate phase margin.  
FB  
IN  
control loop has a 0dB gain crossing with -20dB/decade slope  
and a phase margin greater than 45 degrees. Include worst  
case component variations when determining phase margin.  
0dB  
Phase margin is the difference between the closed loop  
phase at f and 180 degrees. The equations below relate  
0dB  
the compensation network’s poles, zeros and gain to the  
components (R1, R2, R3, C1, C2, and C3) in Figure 11.  
Use these guidelines for locating the poles and zeros of the  
compensation network:  
Component Selection Guidelines  
Output Capacitor Selection  
The output capacitors for each output have unique  
requirements. In general the output capacitors should be  
selected to meet the dynamic regulation requirements.  
Additionally, the PWM converters require an output capacitor  
to filter the current ripple. The linear regulator is internally  
compensated and requires an output capacitor that meets  
the stability requirements. The load transient for the  
microprocessor core requires high quality capacitors to  
supply the high slew rate (di/dt) current demands.  
1. Pick Gain (R2/R1) for desired converter bandwidth  
ST  
2. Place 1 Zero Below Filter’s Double Pole (~75% FLC)  
ND  
3. Place 2  
Zero at Filter’s Double Pole  
ST  
4. Place 1 Pole at the ESR Zero  
ND  
5. Place 2  
Pole at Half the Switching Frequency  
6. Check Gain against Error Amplifier’s Open-Loop Gain  
7. Estimate Phase Margin - Repeat if necessary  
Compensation Break Frequency Equations  
PWM Output Capacitors  
Modern microprocessors produce transient load rates above  
10A/ns. High frequency capacitors initially supply the transient  
and slow the current load rate seen by the bulk capacitors.  
The bulk filter capacitor values are generally determined by  
the ESR (effective series resistance) and ESL (effective series  
inductance) parameters rather than actual capacitance.  
1
1
F
= -------------------------------------------------------  
F
= -----------------------------------  
2π × R2 × C1  
P1  
Z1  
C1 × C2  
2π × R  
×
----------------------  
2
C1 + C2  
1
1
F
= -----------------------------------  
F
= -------------------------------------------------------  
2π × (R1 + R3) × C3  
P2  
Z2  
2π × R3 × C3  
Figure 12 shows an asymptotic plot of the DC-DC converter’s  
gain vs. frequency. The actual modulator gain has a peak due  
to the high Q factor of the output filter at F , which is not  
LC  
High frequency decoupling capacitors should be placed as  
close to the power pins of the load as physically possible. Be  
careful not to add inductance in the circuit board wiring that  
2-206