3.5
3.0
2.5
3.5
3.0
2.5
5
4
3
2
V
V
= 15 TO 30 V
= 0 V
CC
EE
I
I
I
I
CCH
CCL
CCH
CCL
OUTPUT = OPEN
V
V
= 30 V
= 0 V
= 10 mA for I
CC
EE
I
I
T
= 10 mA for I
CCH
F
F
2.0
1.5
2.0
1.5
= 0 mA for I
CCL
1
0
I
I
F
F
CCH
= 25 °C
A
EE
= 0 mA for I
CCL
V
= 0 V
15
20
– SUPPLY VOLTAGE – V
25
30
-40 -20
0
20 40 60 80 100
-40 -20
0
20 40 60 80 100
– TEMPERATURE – °C
T
– TEMPERATURE – °C
T
V
A
A
CC
Figure 7. ICC vs. Temperature.
Figure 8. ICC vs. VCC
.
Figure 9. IFLH vs. Temperature.
500
500
500
I
T
= 10 mA
V
= 30 V, V
= 0 V
I = 10 mA
F
CC
Rg = 10 Ω, Cg = 10 nF
DUTY CYCLE = 50%
f = 10 kHz
F
CC
Rg = 10 Ω, Cg = 10 nF
= 25 °C
EE
T
T
PLH
PHL
= 25 °C
V
= 30 V, V
= 0 V
EE
A
Rg = 10 W
Cg = 10 nF
DUTY CYCLE = 50%
f = 10 kHz
T
A
400
300
400
300
400
300
DUTY CYCLE = 50%
f = 10 kHz
200
100
200
100
200
100
T
T
T
T
PLH
PHL
PLH
PHL
6
8
10
12
14
16
15
20
25
30
-40 -20
0
20 40 60 80 100
I
– FORWARD LED CURRENT – mA
V
– SUPPLY VOLTAGE – V
T
– TEMPERATURE – °C
F
CC
A
Figure 10. Propagation Delay vs. VCC
.
Figure 11. Propagation Delay vs. IF.
Figure 12. Propagation Delay vs.
Temperature.
500
500
30
V
T
= 30 V, V
= 25 °C
= 10 mA
= 0 V
EE
V
T
= 30 V, V
= 25 °C
= 10 mA
= 0 V
EE
CC
A
CC
A
25
20
15
10
I
I
F
F
400
300
Cg = 10 nF
400
300
Rg = 10 Ω
DUTY CYCLE = 50%
f = 10 kHz
DUTY CYCLE = 50%
f = 10 kHz
200
100
200
100
5
0
T
T
T
T
PLH
PHL
PLH
PHL
0
20
40
60
80
100
0
I
1
2
3
4
5
0
10
20
30
40
50
Cg – LOAD CAPACITANCE – nF
– FORWARD LED CURRENT – mA
Rg – SERIES LOAD RESISTANCE – Ω
F
Figure 13. Propagation Delay vs. Rg.
Figure 14. Propagation Delay vs. Cg.
Figure 15. Transfer Characteristics.
1-189