欢迎访问ic37.com |
会员登录 免费注册
发布采购

ATMEGA48PA-AU 参数 Datasheet PDF下载

ATMEGA48PA-AU图片预览
型号: ATMEGA48PA-AU
PDF下载: 下载PDF文件 查看货源
内容描述: 8位微控制器与4/8/ 16 / 32K字节的系统内可编程闪存 [8-bit Microcontroller with 4/8/16/32K Bytes In-System Programmable Flash]
分类和应用: 闪存微控制器和处理器外围集成电路时钟
文件页数/大小: 448 页 / 12817 K
品牌: ATMEL [ ATMEL ]
 浏览型号ATMEGA48PA-AU的Datasheet PDF文件第249页浏览型号ATMEGA48PA-AU的Datasheet PDF文件第250页浏览型号ATMEGA48PA-AU的Datasheet PDF文件第251页浏览型号ATMEGA48PA-AU的Datasheet PDF文件第252页浏览型号ATMEGA48PA-AU的Datasheet PDF文件第254页浏览型号ATMEGA48PA-AU的Datasheet PDF文件第255页浏览型号ATMEGA48PA-AU的Datasheet PDF文件第256页浏览型号ATMEGA48PA-AU的Datasheet PDF文件第257页  
ATmega48PA/88PA/168PA/328P  
If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to  
one. ADSC can also be used to determine if a conversion is in progress. The ADSC bit will be  
read as one during a conversion, independently of how the conversion was started.  
23.4 Prescaling and Conversion Timing  
Figure 23-3. ADC Prescaler  
ADEN  
START  
Reset  
7-BIT ADC PRESCALER  
CK  
ADPS0  
ADPS1  
ADPS2  
ADC CLOCK SOURCE  
By default, the successive approximation circuitry requires an input clock frequency between 50  
kHz and 200 kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the  
input clock frequency to the ADC can be higher than 200 kHz to get a higher sample rate.  
The ADC module contains a prescaler, which generates an acceptable ADC clock frequency  
from any CPU frequency above 100 kHz. The prescaling is set by the ADPS bits in ADCSRA.  
The prescaler starts counting from the moment the ADC is switched on by setting the ADEN bit  
in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is continuously  
reset when ADEN is low.  
When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion  
starts at the following rising edge of the ADC clock cycle.  
A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched  
on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.  
When the bandgap reference voltage is used as input to the ADC, it will take a certain time for  
the voltage to stabilize. If not stabilized, the first value read after the first conversion may be  
wrong.  
The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conver-  
sion and 13.5 ADC clock cycles after the start of an first conversion. When a conversion is  
complete, the result is written to the ADC Data Registers, and ADIF is set. In Single Conversion  
mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a new  
conversion will be initiated on the first rising ADC clock edge.  
When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This assures  
a fixed delay from the trigger event to the start of conversion. In this mode, the sample-and-hold  
takes place two ADC clock cycles after the rising edge on the trigger source signal. Three addi-  
tional CPU clock cycles are used for synchronization logic.  
253  
8161D–AVR–10/09  
 复制成功!