欢迎访问ic37.com |
会员登录 免费注册
发布采购

ATMEGA8L-8MUR 参数 Datasheet PDF下载

ATMEGA8L-8MUR图片预览
型号: ATMEGA8L-8MUR
PDF下载: 下载PDF文件 查看货源
内容描述: 8位爱特梅尔带有8K字节的系统内可编程闪存 [8-bit Atmel with 8KBytes In-System PRogrammable Flash]
分类和应用: 闪存微控制器和处理器外围集成电路异步传输模式PCATM时钟
文件页数/大小: 331 页 / 6705 K
品牌: ATMEL [ ATMEL ]
 浏览型号ATMEGA8L-8MUR的Datasheet PDF文件第69页浏览型号ATMEGA8L-8MUR的Datasheet PDF文件第70页浏览型号ATMEGA8L-8MUR的Datasheet PDF文件第71页浏览型号ATMEGA8L-8MUR的Datasheet PDF文件第72页浏览型号ATMEGA8L-8MUR的Datasheet PDF文件第74页浏览型号ATMEGA8L-8MUR的Datasheet PDF文件第75页浏览型号ATMEGA8L-8MUR的Datasheet PDF文件第76页浏览型号ATMEGA8L-8MUR的Datasheet PDF文件第77页  
ATmega8(L)  
Timer/Counter0 Timer/Counter1 and Timer/Counter0 share the same prescaler module, but the Timer/Counters  
can have different prescaler settings. The description below applies to both Timer/Counter1 and  
Timer/Counter0.  
and  
Timer/Counter1  
Prescalers  
Internal Clock Source The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This  
provides the fastest operation, with a maximum Timer/Counter clock frequency equal to system  
clock frequency (fCLK_I/O). Alternatively, one of four taps from the prescaler can be used as a  
clock source. The prescaled clock has a frequency of either fCLK_I/O/8, fCLK_I/O/64, fCLK_I/O/256, or  
fCLK_I/O/1024.  
Prescaler Reset  
The prescaler is free running (that is, operates independently of the clock select logic of the  
Timer/Counter) and it is shared by Timer/Counter1 and Timer/Counter0. Since the prescaler is  
not affected by the Timer/Counter’s clock select, the state of the prescaler will have implications  
for situations where a prescaled clock is used. One example of prescaling artifacts occurs when  
the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The number of system clock  
cycles from when the timer is enabled to the first count occurs can be from 1 to N+1 system  
clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024).  
It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execu-  
tion. However, care must be taken if the other Timer/Counter that shares the same prescaler  
also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is  
connected to.  
External Clock Source An external clock source applied to the T1/T0 pin can be used as Timer/Counter clock  
(clkT1/clkT0). The T1/T0 pin is sampled once every system clock cycle by the pin synchronization  
logic. The synchronized (sampled) signal is then passed through the edge detector. Figure 30  
shows a functional equivalent block diagram of the T1/T0 synchronization and edge detector  
logic. The registers are clocked at the positive edge of the internal system clock (clkI/O). The latch  
is transparent in the high period of the internal system clock.  
The edge detector generates one clkT1/clkT pulse for each positive (CSn2:0 = 7) or negative  
0
(CSn2:0 = 6) edge it detects.  
Figure 30. T1/T0 Pin Sampling  
Tn_sync  
(To Clock  
Tn  
D
Q
D
Q
D Q  
Select Logic)  
LE  
clkI/O  
Synchronization  
Edge Detector  
The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles  
from an edge has been applied to the T1/T0 pin to the counter is updated.  
Enabling and disabling of the clock input must be done when T1/T0 has been stable for at least  
one system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated.  
Each half period of the external clock applied must be longer than one system clock cycle to  
ensure correct sampling. The external clock must be guaranteed to have less than half the sys-  
tem clock frequency (fExtClk < fclk_I/O/2) given a 50/50ꢀ duty cycle. Since the edge detector uses  
73  
2486AA–AVR–02/2013  
 复制成功!