欢迎访问ic37.com |
会员登录 免费注册
发布采购

ATMEGA169PV 参数 Datasheet PDF下载

ATMEGA169PV图片预览
型号: ATMEGA169PV
PDF下载: 下载PDF文件 查看货源
内容描述: 微控制器,带有16K字节的系统内可编程闪存 [Microcontroller with 16K Bytes In-System Programmable Flash]
分类和应用: 闪存微控制器
文件页数/大小: 390 页 / 3485 K
品牌: ATMEL [ ATMEL ]
 浏览型号ATMEGA169PV的Datasheet PDF文件第131页浏览型号ATMEGA169PV的Datasheet PDF文件第132页浏览型号ATMEGA169PV的Datasheet PDF文件第133页浏览型号ATMEGA169PV的Datasheet PDF文件第134页浏览型号ATMEGA169PV的Datasheet PDF文件第136页浏览型号ATMEGA169PV的Datasheet PDF文件第137页浏览型号ATMEGA169PV的Datasheet PDF文件第138页浏览型号ATMEGA169PV的Datasheet PDF文件第139页  
ATmega169P  
15. Timer/Counter0 and Timer/Counter1 Prescalers  
Timer/Counter1 and Timer/Counter0 share the same prescaler module, but the Timer/Counters  
can have different prescaler settings. The description below applies to both Timer/Counter1 and  
Timer/Counter0.  
15.1 Prescaler Reset  
The prescaler is free running, i.e., operates independently of the Clock Select logic of the  
Timer/Counter, and it is shared by Timer/Counter1 and Timer/Counter0. Since the prescaler is  
not affected by the Timer/Counter’s clock select, the state of the prescaler will have implications  
for situations where a prescaled clock is used. One example of prescaling artifacts occurs when  
the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The number of system clock  
cycles from when the timer is enabled to the first count occurs can be from 1 to N+1 system  
clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024).  
It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execu-  
tion. However, care must be taken if the other Timer/Counter that shares the same prescaler  
also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is  
connected to.  
15.2 Internal Clock Source  
The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This  
provides the fastest operation, with a maximum Timer/Counter clock frequency equal to system  
clock frequency (fCLK_I/O). Alternatively, one of four taps from the prescaler can be used as a  
clock source. The prescaled clock has a frequency of either fCLK_I/O/8, fCLK_I/O/64, fCLK_I/O/256, or  
fCLK_I/O/1024.  
15.3 External Clock Source  
An external clock source applied to the T1/T0 pin can be used as Timer/Counter clock  
(clkT1/clkT0). The T1/T0 pin is sampled once every system clock cycle by the pin synchronization  
logic. The synchronized (sampled) signal is then passed through the edge detector. Figure 15-1  
on page 135 shows a functional equivalent block diagram of the T1/T0 synchronization and  
edge detector logic. The registers are clocked at the positive edge of the internal system clock  
(clkI/O). The latch is transparent in the high period of the internal system clock.  
The edge detector generates one clkT1/clkT pulse for each positive (CSn2:0 = 7) or negative  
0
(CSn2:0 = 6) edge it detects.  
Figure 15-1. T1/T0 Pin Sampling  
Tn_sync  
(To Clock  
Tn  
D
Q
D
Q
D
Q
Select Logic)  
LE  
clkI/O  
Synchronization  
Edge Detector  
The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles  
from an edge has been applied to the T1/T0 pin to the counter is updated.  
135  
8018A–AVR–03/06  
 复制成功!