欢迎访问ic37.com |
会员登录 免费注册
发布采购

90USB1287-16AU 参数 Datasheet PDF下载

90USB1287-16AU图片预览
型号: 90USB1287-16AU
PDF下载: 下载PDF文件 查看货源
内容描述: 单片机具有ISP功能的Flash和USB控制器64 / 128K字节 [Microcontroller with 64/128K Bytes of ISP Flash and USB Controller]
分类和应用: 微控制器
文件页数/大小: 434 页 / 3172 K
品牌: ATMEL [ ATMEL ]
 浏览型号90USB1287-16AU的Datasheet PDF文件第124页浏览型号90USB1287-16AU的Datasheet PDF文件第125页浏览型号90USB1287-16AU的Datasheet PDF文件第126页浏览型号90USB1287-16AU的Datasheet PDF文件第127页浏览型号90USB1287-16AU的Datasheet PDF文件第129页浏览型号90USB1287-16AU的Datasheet PDF文件第130页浏览型号90USB1287-16AU的Datasheet PDF文件第131页浏览型号90USB1287-16AU的Datasheet PDF文件第132页  
prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the out-  
put glitch-free.  
The OCRnx Register access may seem complex, but this is not case. When the double buffering  
is enabled, the CPU has access to the OCRnx Buffer Register, and if double buffering is dis-  
abled the CPU will access the OCRnx directly. The content of the OCR1x (Buffer or Compare)  
Register is only changed by a write operation (the Timer/Counter does not update this register  
automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is not read via the high byte  
temporary register (TEMP). However, it is a good practice to read the low byte first as when  
accessing other 16-bit registers. Writing the OCRnx Registers must be done via the TEMP Reg-  
ister since the compare of all 16 bits is done continuously. The high byte (OCRnxH) has to be  
written first. When the high byte I/O location is written by the CPU, the TEMP Register will be  
updated by the value written. Then when the low byte (OCRnxL) is written to the lower eight bits,  
the high byte will be copied into the upper 8-bits of either the OCRnx buffer or OCRnx Compare  
Register in the same system clock cycle.  
For more information of how to access the 16-bit registers refer to “Accessing 16-bit Registers”  
on page 120.  
14.6.1  
Force Output Compare  
In non-PWM Waveform Generation modes, the match output of the comparator can be forced by  
writing a one to the Force Output Compare (FOCnx) bit. Forcing compare match will not set the  
OCFnx Flag or reload/clear the timer, but the OCnx pin will be updated as if a real compare  
match had occurred (the COMn1:0 bits settings define whether the OCnx pin is set, cleared or  
toggled).  
14.6.2  
14.6.3  
Compare Match Blocking by TCNTn Write  
All CPU writes to the TCNTn Register will block any compare match that occurs in the next timer  
clock cycle, even when the timer is stopped. This feature allows OCRnx to be initialized to the  
same value as TCNTn without triggering an interrupt when the Timer/Counter clock is enabled.  
Using the Output Compare Unit  
Since writing TCNTn in any mode of operation will block all compare matches for one timer clock  
cycle, there are risks involved when changing TCNTn when using any of the Output Compare  
channels, independent of whether the Timer/Counter is running or not. If the value written to  
TCNTn equals the OCRnx value, the compare match will be missed, resulting in incorrect wave-  
form generation. Do not write the TCNTn equal to TOP in PWM modes with variable TOP  
values. The compare match for the TOP will be ignored and the counter will continue to 0xFFFF.  
Similarly, do not write the TCNTn value equal to BOTTOM when the counter is downcounting.  
The setup of the OCnx should be performed before setting the Data Direction Register for the  
port pin to output. The easiest way of setting the OCnx value is to use the Force Output Com-  
pare (FOCnx) strobe bits in Normal mode. The OCnx Register keeps its value even when  
changing between Waveform Generation modes.  
Be aware that the COMnx1:0 bits are not double buffered together with the compare value.  
Changing the COMnx1:0 bits will take effect immediately.  
14.7 Compare Match Output Unit  
The Compare Output mode (COMnx1:0) bits have two functions. The Waveform Generator uses  
the COMnx1:0 bits for defining the Output Compare (OCnx) state at the next compare match.  
128  
AT90USB64/128  
7593A–AVR–02/06  
 复制成功!