欢迎访问ic37.com |
会员登录 免费注册
发布采购

A1280A-PL84M 参数 Datasheet PDF下载

A1280A-PL84M图片预览
型号: A1280A-PL84M
PDF下载: 下载PDF文件 查看货源
内容描述: [Field Programmable Gate Array, 1232 CLBs, 8000 Gates, CMOS, PQCC84, PLASTIC, LCC-84]
分类和应用: 可编程逻辑
文件页数/大小: 38 页 / 652 K
品牌: ACTEL [ Actel Corporation ]
 浏览型号A1280A-PL84M的Datasheet PDF文件第1页浏览型号A1280A-PL84M的Datasheet PDF文件第2页浏览型号A1280A-PL84M的Datasheet PDF文件第3页浏览型号A1280A-PL84M的Datasheet PDF文件第4页浏览型号A1280A-PL84M的Datasheet PDF文件第6页浏览型号A1280A-PL84M的Datasheet PDF文件第7页浏览型号A1280A-PL84M的Datasheet PDF文件第8页浏览型号A1280A-PL84M的Datasheet PDF文件第9页  
ACT2 Family FPGAs  
Package Thermal Characteristics  
The device junction to case thermal characteristic is θjc,  
and the junction to ambient air characteristic is θja. The  
thermal characteristics for θja are shown with two different  
air flow rates.  
Maximum junction temperature is 150°C.  
A sample calculation of the absolute maximum power  
dissipation allowed for a PQFP 160-pin package at  
commercial temperature is as follows:  
Max. junction temp. (°C) – Max. commercial temp.  
----------------------------------------------------------------------------------------------------------------------------  
150°C – 70°C  
---------------------------------  
=
= 2.4 W  
θja (°C/W)  
33°C/W  
θja  
Still Air  
θja  
300 ft/min  
Package Type  
Pin Count  
θjc  
Units  
Ceramic Pin Grid Array  
100  
132  
176  
5
5
8
35  
30  
23  
17  
15  
12  
°C/W  
°C/W  
°C/W  
Ceramic Quad Flat Pack  
Plastic Quad Flat Pack1  
172  
8
25  
15  
°C/W  
100  
144  
160  
13  
15  
15  
48  
40  
38  
40  
32  
30  
°C/W  
°C/W  
°C/W  
Plastic Leaded Chip Carrier2  
Very Thin Quad Flat Pack3  
Thin Quad Flat Pack4  
84  
12  
12  
15  
37  
43  
32  
28  
35  
25  
°C/W  
°C/W  
°C/W  
100  
176  
Notes:(Maximum Power in Still Air)  
1. Maximum Power Dissipation for PQFP packages are 1.9 Watts (100-pin), 2.3 Watts (144-pin), and 2.4 Watts (160-pin).  
2. Maximum Power Dissipation for PLCC packages is 2.7 Watts.  
3. Maximum Power Dissipation for VQFP packages is 2.3 Watts.  
4. Maximum Power Dissipation for TQFP packages is 3.1 Watts.  
Power Dissipation  
greater reduction in board-level power dissipation can be  
achieved.  
P = [ICCstandby + ICCactive] * VCC + IOL * VOL * N +  
I
OH * (VCC VOH) * M  
The power due to standby current is typically a small  
component of the overall power. Standby power is  
calculated below for commercial, worst case conditions.  
Where:  
ICC standby is the current flowing when no inputs or outputs  
are changing.  
ICC  
VCC  
Power  
2 mA  
5.25V  
10.5 mW  
I
CC active is the current flowing due to CMOS switching.  
OL, IOH are TTL sink/source currents.  
The static power dissipated by TTL loads depends on the  
number of outputs driving high or low and the DC load  
current. Again, this value is typically small. For instance, a  
32-bit bus sinking 4 mA at 0.33 V will generate 42 mW with  
all outputs driving low, and 140 mW with all outputs driving  
high. The actual dissipation will average somewhere  
between as I/Os switch states with time.  
I
VOL, VOH are TTL level output voltages.  
N equals the number of outputs driving TTL loads to VOL  
.
M equals the number of outputs driving TTL loads to VOH  
.
An accurate determination of N and M is problematical  
because their values depend on the family type, design  
details, and on the system I/O. The power can be divided  
into two components: static and active.  
Active Power Component  
Power dissipation in CMOS devices is usually dominated by  
the active (dynamic) power dissipation. This component is  
frequency dependent, a function of the logic and the  
external I/O. Active power dissipation results from charging  
internal chip capacitances of the interconnect,  
unprogrammed antifuses, module inputs, and module  
outputs, plus external capacitance due to PC board traces  
Static Power Component  
Actel FPGAs have small static power components that  
result in lower power dissipation than PALs or PLDs. By  
integrating multiple PALs/PLDs into one FPGA, an even  
v4.0  
5
 复制成功!